

和弊芸,胡琦,李子怡,任思琪,马雪晴,潘学标. 华北平原夏玉米不同施氮措施的综合增温潜势研究[J]. 中国农业大学学报,2023,28(06);73-87. HE Huayun, HU Qi, LI Ziyi, REN Siqi, MA Xueqing, PAN Xuebiao. Study on the global warming potential of summer maize under different nitrogen application rates in North China Plain[J]. Journal of China Agricultural University, 2023, 28(06); 73-87. DOI, 10.11841/j.issn.1007-4333.2023.06.07

# 华北平原夏玉米不同施氮措施的综合增温潜势研究

和 骅 芸<sup>1,2</sup> 胡 琦<sup>1,2\*</sup> 李子怡<sup>1,2</sup> 任思 琪<sup>1,2</sup> 马雪晴<sup>1,2</sup> 潘学标<sup>1,2</sup> (1.中国农业大学资源与环境学院,北京 100193; 2.中国气象局-中国农业大学农业应对气候变化联合实验室,北京 100193)

摘 要 为探究和利用高固碳、低排放的农业管理措施,以华北平原夏玉米生产为研究对象,采用大田试验和生命 周期评价方法,设置对照(CK)、低氮肥(LF)、适宜氮肥(SU)、减排(适宜氮肥+抑制剂,ER)以及高氮肥(HF)5 种 施氮处理,定量评估夏玉米生产全过程中的土壤排放温室气体增温潜势(GWP<sub>Soil</sub>)、农业投入增温潜势 (GWP<sub>Indiret</sub>)、净初级生产力增温潜势(GWP<sub>NPP</sub>)、净综合增温潜势(Net GWP)和农田经济效益。结果表明:不同处 理总排放增温潜势(GWP<sub>Soil</sub>+GWP<sub>Indiret</sub>)为10831.3~14301.9 kg/hm²(以 CO2 当量计),由高到低依次为HF> SU>LF>ER>CK;HF的GWP<sub>Soil</sub>及GWP<sub>Indiret</sub>均为最高,较CK处理分别高10.9%和153.3%;GWP<sub>Soil</sub>对总排放 量的贡献较大(>70%),农业投入中肥料对GWP<sub>Indiret</sub>的贡献最大,为54.1%~69.7%(CK除外),灌溉次之;华北 平原夏玉米农田 Net GWP 为负值,是大气的碳汇,SU 和 ER 处理 Net GWP 最大,绝对值分别较CK 处理高 18.1%和17.9%。综上,ER和SU处理净利润最高,属于高收益-高固碳种植管理模式,但ER与SU处理相比, ER的GWP<sub>Soil</sub>降低了8.7%,更有利于温室气体减排,适合作为绿色农业发展模式在华北平原推广。 **关键词** 华北平原;夏玉米;温室气体;生命周期;综合增温潜势

中图分类号 S513;S19 文章编号 1007-4333(2023)06-0073-15 文献标志码 A

# Study on the global warming potential of summer maize under different nitrogen application rates in North China Plain

HE Huayun<sup>1,2</sup>, HU Qi<sup>1,2\*</sup>, LI Ziyi<sup>1,2</sup>, REN Siqi<sup>1,2</sup>, MA Xueqing<sup>1,2</sup>, PAN Xuebiao<sup>1,2</sup>

(1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;

2. China Meteorological Administration-China Agricultural University Joint Laboratory of Agriculture Addressing Climate Change, Beijing 100193, China)

Abstract In order to explore and utilize agricultural management measures with high carbon sequestration and low emissions, summer maize production in the North China Plain was taken as the research object. Based on field experiments and life cycle assessment methods, five nitrogen application treatments including control check (CK), low nitrogen fertilization (LF), suitable fertilizer utilization (SU), emission reduction (suitable nitrogen with inhibitor, ER) and high nitrogen fertilizer (HF) were conducted to quantitatively evaluate the warming potentials of soil greenhouse gas emissions, agricultural inputs (GWP<sub>Indirect</sub>), and net primary productivity (GWP<sub>NPP</sub>). The net comprehensive warming potential (Net GWP) and the economic benefits in the whole process of summer maize production were also investigated. The results showed that: The total warming potential (GWP<sub>Soll</sub> + GWP<sub>Indirect</sub>) of emissions ranged from 10 831.3 to 14 301.9 kg/hm<sup>2</sup> (measured in CO<sub>2</sub> equivalent) under different treatments, with HF>SU>LF>ER>CK in

收稿日期: 2022-11-09

基金项目:国家重点研发计划项目(2017YFD0300304-1);河南省农业气象保障与应用技术重点开放实验室开放研究基金(AMF201905)

第一作者:和骅芸(ORCID:0000-0001-6729-6000),博士研究生,E-mail:hehuayun0715@163.com

通讯作者:胡琦(ORCID:0000-0003-2578-7498),副教授,主要从事气候变化与农业减灾等研究,E-mail:huq@cau.edu.cn

descending order. The GWP<sub>soll</sub> and GWP<sub>Indirect</sub> of HF were the highest, 10.9% and 153.3% higher than those of CK, respectively. GWP<sub>soll</sub> made major contributions to the total emissions (>70%), while fertilizer contributed the most to GWP<sub>indirect</sub> in agricultural inputs, accounting for 54.1% to 69.7% (except CK), followed by irrigation. The Net GWP of summer maize farmland in North China Plain was negative, which was the carbon sink of the atmosphere. SU and ER treatments had the largest Net GWP, which was 18.1% and 17.9% higher than CK treatment, respectively. To sum up, the net profits of ER and SU treatments were the highest and these two treatments belonged to the high yield-high Net GWP planting management mode. However, the GWP<sub>soll</sub> value of ER reduced by 8.7% compared with SU treatment. Therefore, ER treatment was more conducive to realize greenhouse gas emission reduction and suitable to be promoted as a green agricultural development mode in the North China Plain.

Keywords North China Plain; summer maize; greenhouse gases; life cycle; global warming potential

全球气候正在发生以变暖为主要特征的显著变 化。联合国政府间气候变化专门委员会 (Intergovernmental Panel on Climate Change, IPCC)第6次评估报告指出,自工业化以来,人类活 动的影响已经使全球气候系统变暖<sup>[1]</sup>。作为陆地生 态系统的重要组成部分,农田生态系统对温室效应 具有重要影响。目前,农业已成为第二大温室气体 的来源<sup>[2]</sup>。农田生态系统对温室气体总排放的贡献 率大约是20%<sup>[3]</sup>。作为农业大国之一,农业相关的 温室气体排放量约占中国温室气体排放总量的 17%~32%<sup>[4]</sup>。农业生产不仅关系到国家粮食安全 和社会稳定,而且对全球温室气体排放的影响也不 容忽视,控制农业及其相关部门产生的碳排放已成 为中国减排的重要方面<sup>[5]</sup>。

农田温室气体排放主要包括物质资源投入(化肥、农药、种子等)以及田间管理措施(播种、灌溉、收获等)两方面<sup>[6]</sup>。目前,已有研究利用生命周期评价 法(LCA法)评估作物生态系统碳排放,该方法计算 的是农作物生产过程中由农事操作和农资投入所引 起的直接或间接碳排放的总量<sup>[7]</sup>。王上等<sup>[7]</sup>定量评 估发现华北平原春绿豆-夏玉米种植模式部分替代 传统冬小麦-夏玉米模式,能够提高农民收入、降低 农业生产系统碳排放和碳足迹;马怀英等<sup>[8]</sup>基于大 田试验和 LCA 法,发现燕麦大豆间作的产量和经 济效益较高且碳足迹较低。尽管农田碳排放的研究 已经取得了一些成果,关于温室气体的类型和系统 边界的定义仍存在争议<sup>[9-10]</sup>,关于粮食作物碳排放 的研究结果存在较大差异<sup>[11-14]</sup>。

农业生产系统是人类活动干预下的复合系统, 在消耗各种资源的同时,植物又会通过光合作用吸 收空气中的 CO<sub>2</sub> 并储存,从而减轻温室效应<sup>[15]</sup>。因 此,在计算农业生产系统碳排放时,要同时考虑农田 生态系统的固碳量<sup>[16-17]</sup>。农田生态系统综合增温潜 势(Global warming potential, GWP)能够综合且精确地评价农田生态系统或某一农业管理措施的增温 潜势<sup>[18]</sup>。在持续提高作物产量和土壤生产力的同时,要尽可能地降低外源投入,从而降低综合增温潜势,使农田生态系统的净碳固存得到提高。

华北平原是中国粮食主产区之一,耕地面积占 中国总耕地面积的 25%<sup>[19]</sup>,粮食产量约占中国粮食 总产量的 30%<sup>[20]</sup>。长期以来,该粮食产区为了保障 粮食的高产稳产而过度施用化肥,导致农田生态系 统排放大量的温室气体如 CO<sub>2</sub>、CH<sub>4</sub>和 N<sub>2</sub>O等。如 何在保证产量的前提下增效减排,协调华北平原夏 玉米农田温室气体排放及氮肥投入,发展绿色农业 是中国缓解未来气候变暖、实现"双碳"目标的重要 途径之一。因此,本研究基于 2018 年至 2019 年田 间定位试验,采用生命周期评价法,量化华北平原夏 玉米生产过程中的固碳量、直接、间接温室气体增温 潜势和净综合增温潜势,探究不同施肥水平和减排 措施对夏玉米产量、农田温室气体排放量和固碳量 的影响,以期为华北平原夏玉米生产创新减排增效 技术提供科学依据。

## 1 材料与方法

#### 1.1 研究区域概况

试验于 2018—2019 年 6—10 月在中国农业大 学吴桥实验站(37°37′ N,116°23′ E)进行。实验站 位于河北省沧州市吴桥县沟店铺乡姚庄村,地处黑 龙港流域中部,海拔 14.0~22.6 m,为半湿润大陆 性季风气候,多年平均气温 12.6 ℃,全年≥0 ℃活 动积温 4 862.9 ℃,年降水量 529 mm,主要分布在 6—8 月,雨热同期,日照时数 2 100~2 700 h,无霜 期 192 d。种植制度为冬小麦-夏玉米一年两熟。该 地以冲积型盐化潮土为主要土壤类型,轻壤土,土地 质地及基础肥力情况如表 1 所示。 表1 研究区土壤的基础肥力状况

Table 1 Basic soil fertility status in the study area 土壤层次/cm 速效磷/(mg/kg) 速效钾/(mg/kg) 碱解氮/(mg/kg) 有机质/(g/kg)  $_{\rm pH}$ Soil layer Available phosphorus Available potassium Available nitrogen Organic matter  $0 \sim 20$ 29.57 212.10 80.18 16.10 8.25 8.66 102.64 28.08 8.90  $20 \sim 40$ 4.47

#### 20 10

#### 1.2 试验设计

试验品种为郑单 958,种植密度 4 500 株/亩, 株距 25 cm,行距 60 cm,播种方式为穴播。夏玉米 施肥处理方案详见表 2,每个处理设置 3 个重复, 采用随机区组排列,相邻小区之间种植 2 行保护 行。每个小区面积为长 9.0 m×宽 5.4 m 约 48.6 m<sup>2</sup>。 夏玉米播种时间为 6 月 15 日,播种后采用漫灌, 灌溉量为 75 mm,试验过程中没有人工补灌。试验肥料于 6 月 20 日一次性施用,施肥方式为沟施,其余时间不做追肥处理。2018 年、2019 年收获时间均为 10 月 8 日,玉米全生育期为 114 d。收获期每个重复选中间 2 行、每行 5 米实际收获,记录小区收获范围内总株数、空杆数、双穗数和有效穗数。

表 2 夏玉米不同施肥处理方案

|           | Table 2 Different fertilization      | kg/hm² |          |        |                      |
|-----------|--------------------------------------|--------|----------|--------|----------------------|
| 处理        | 描述                                   | 氮肥     | 磷肥       | 钾肥     | 其他                   |
| Treatment | Description                          | Ν      | $P_2O_5$ | $K_2O$ | Other                |
| СК        | 对照 Control check                     | 23.40  | 60.00    | 90.00  |                      |
| LF        | 低氮肥 Low fertilizer                   | 165.00 | 60.00    | 90.00  |                      |
| SU        | 适宜氮肥 Suitable fertilizer utilization | 180.00 | 120.00   | 105.00 | 四层啦 01 75            |
| ER        | 减排 Emission reduction                | 180.00 | 120.00   | 105.00 | 双氰胺:21.75<br>気現 0 00 |
| HF        | 高氮肥 High fertilizer                  | 300.00 | 180.00   | 210.00 | 至4兆:0.30             |

## 1.3 测定指标及方法

## 1.3.1 土壤温室气体采集

测定温室气体的排放通量的方法为静态箱一气 相色谱法(Static chamber/gas chromatography techniques)。采气箱由 PVC 板制成,规格为 60 cm×25 cm×23 cm,顶部有铝制开关用于采气。 在施肥之后需安装好静态箱,静态箱的放置位置应 尽量靠近小区中心,并且保证基座内无植株、杂草, 基本可代表整个小区的土面情况。安装时将基座放 置在株间,插入约10 cm 的土层中固定,试验期间不 再挪动静态箱的位置,直至试验结束。测气前在基 座的间隙中加水密封,隔绝箱内外环境。箱子倒扣 前晃动数次,确保箱体内在采气前无气体残留。

采气频率为施肥后连测 7 d,之后每 10 d 测一次,遇到降水则在降水后一天补测一次。采样时间 段为上午 9:00—10:00,采样时间分别为盖箱后的 0 min、15 min、30 min,用注射器每次从箱子中抽取 气体样本 80~120 mL,用于分析计算不同处理的 N<sub>2</sub>O、CO<sub>2</sub> 和 CH<sub>4</sub> 排 放/吸 收 通 量。样 品 利 用 Agilent6820 型气相色谱仪进行分析,采用 CA-5 气 体样品进样仪进样,气相色谱仪检测器为电子捕获 检测器。在玉米生长阶段,取气时同步记录玉米生 长状态、土壤含水率、箱内温度。

## 1.3.2 土壤温室气体排放通量

气体的排放通量是指单位面积、单位时间内该 气体的排放量,排放通量为正值表示土壤向大气排 放,是该气体的源;负值表示吸收,则代表土壤是该 气体的汇。气体排放通量计算公式<sup>[21]</sup>为:

$$F = \rho \times \frac{V}{A} \times \frac{P_s}{P} \times \frac{T_0}{T} \times \frac{\mathrm{d}C_t}{\mathrm{d}t} \tag{1}$$

式中:F 为气体排放通量, $\mu g/(m^2 \cdot h)$ 或 mg/(m<sup>2</sup> · h);  $\rho$  为标准大气状态下 CO<sub>2</sub>、N<sub>2</sub>O、CH<sub>4</sub> 的气体密度 (CO<sub>2</sub>: 1.977 kg/m<sup>3</sup>, N<sub>2</sub>O: 1.978 kg/m<sup>3</sup>, CH<sub>4</sub>: 0.717 kg/m<sup>3</sup>);V 为静态箱体积,m<sup>3</sup>;A 为静态箱基 底面积,m<sup>2</sup>; $P_5$  为样品采集地的大气压强,kPa; $P_0$ 为标准状况下的大气压强,101.325 kPa; $T_0$  为标准 状态下的绝对温度,273.15 K;T为采气时静态箱 内的绝对温度,K; $dC_t/dt$ 为箱内单位时间气体浓度 变化速率。

整个生育期内温室气体排放总量采用线性差值 法计算,计算方法如下:

$$CE = \sum_{i=1}^{n} \frac{F_{i} + F_{i+1}}{2} \times (t_{i+1} - t_{i}) \times 24 \qquad (2)$$

式中: CE 为累积排放量, g/m<sup>2</sup>; F 为排放通量, mg/(m<sup>2</sup> • h); *i* 为第*i* 次气体采样;  $t_{i+1} - t_i$  表示测定间隔天数, d; *n* 为通量观测次数。

1.3.3 土壤排放温室气体增温潜势(GWP<sub>Soil</sub>)

由于 CO<sub>2</sub>、CH<sub>4</sub>和 N<sub>2</sub>O 这 3 种温室气体的增温 效应不同,它们对全球变暖的影响亦不相同。当这 3 种气体从一个系统或区域同时排放时,只有计算 它们作用的综合效果才能了解该系统或区域或某一 农业管理措施对温室效应的贡献,即为综合增温潜 势(Global warming potential,GWP)<sup>[22]</sup>。IPCC (2013)报告中指出,以 100 年影响尺度为计,1 kg CH<sub>4</sub>的增温效应是 1 kg CO<sub>2</sub>的 28 倍,而 1 kg N<sub>2</sub>O 的增温效应是 1 kg CO<sub>2</sub>的 28 倍,而 1 kg N<sub>2</sub>O 的增温效应是 1 kg CO<sub>2</sub>的 265 倍<sup>[23]</sup>。用 GWP<sub>soil</sub> 来表示 CO<sub>2</sub>、CH<sub>4</sub>及 N<sub>2</sub>O 三种温室气体的联合作 用,GWP<sub>soil</sub>的计算如下<sup>[24]</sup>:

 $GWP_{Soil} = R_{CO_2} + R_{N_2O} \times 265 + R_{CH_4} \times 28 (3)$ 式中: $R_{CO_2}$ 为 CO<sub>2</sub>的总排放量,kg/hm<sup>2</sup>; $R_{N_2O}$ 为 N<sub>2</sub>O的 总排放量,kg/hm<sup>2</sup>; $R_{CH_4}$ 为 CH<sub>4</sub>的总排放量,kg/hm<sup>2</sup>。 **1.3.4** 农业投入的间接增温潜势(GWP\_{Indirect})

记录夏玉米全生育周期各种农事活动的物资投入种类和用量,并通过生命周期法计算间接温室气体排放量,主要包括由肥料(氮磷钾肥)、灌溉、机械(柴油)、农药(除草剂和杀虫剂)等投入所造成的CO<sub>2</sub> 当量排放量。各农事活动耗能碳当量排放系数如表 3 所示。44/12 为碳当量转换为二氧化碳当量的转换系数。

$$GWP_{Indirect} = \sum_{i=1}^{n} GWP_{i} = \sum_{i=1}^{n} m_{i}\beta_{i} \qquad (4)$$

式中: $m_i$ 和 $\beta_i$ 分别为第i种物资的用量和CO<sub>2</sub>当量 排放系数。

#### 1.3.5 净初级生产力增温潜势(GWP<sub>NPP</sub>)

玉米收获时测定产量和地上部生物量,计算植 株地上和地下部分转化为净初级生产力(NPP)的增 温潜势(GWP<sub>NPP</sub>):

$$GWP_{NPP} = GWP_{Yield} + GWP_{Straw} + GWP_{Root} + GWP_{Exudate}$$
(5)

表 3 农业投入碳当量排放系数

Table 3 Carbon emissions coefficient for agricultural inputs

| 排放源<br>Emission source | 排放系数(以碳当量计)<br>Emissions coefficient | 参考文献<br>Reference |
|------------------------|--------------------------------------|-------------------|
| 氮肥 N                   | 2.116 kg/kg                          | [25]              |
| 磷肥 P2O5                | 0.636 kg/kg                          | [25]              |
| 钾肥 K <sub>2</sub> O    | 0.180 kg/kg                          | [25]              |
| 除草剂 Herbicide          | 6.300 kg/kg                          | [26]              |
| 杀虫剂 Insecticide        | 5.100 kg/kg                          | [26]              |
| 柴油 Diesel fuel         | 0.940 kg/kg                          | [26]              |
| 电力 Electricity         | 0.310 kg/kW • h                      | [27]              |
| 种子 Seed                | 1.050 kg/kg                          | [28]              |

式中:GWP<sub>Yield</sub>、GWP<sub>Straw</sub>、GWP<sub>Root</sub>和GWP<sub>Exudate</sub>分别 为籽粒增温潜势、秸秆增温潜势、地下部分增温潜势 以及根系分泌物增温潜势,kg/hm<sup>2</sup>,计算公式如下:

$$GWP_{Yield} = Yield \times a \times 44/12$$
 (6)

$$GWP_{Straw} = GWP_{Yield} \times b \tag{7}$$

 $GWP_{Root} = (GWP_{Yield} + GWP_{Straw})/c$  (8)

 $GWP_{Exudate} = (GWP_{Yield} + GWP_{Straw} + GWP_{Root}) \times d$ (9)

式中:Yield 为玉米籽粒产量,kg/hm<sup>2</sup>; a 为玉米籽 粒含碳量,取值 0.4 kg/kg<sup>[29]</sup>;44/12 为碳当量转换 为二氧化碳当量的转换系数;b 为玉米籽粒与秸秆增 温潜势的比,取值 1.1 kg/kg<sup>[29]</sup>;c 为地上部与根增温 潜势的比,取值 6.25 kg/kg<sup>[30-31]</sup>;d 为根系渗出物与 净初级生产力增温潜势的比,取值 0.12 kg/kg<sup>[32-33]</sup>。

## 1.3.6 净综合增温潜势(Net GWP)

农田生态系统碳流特点是固碳和耗碳共存,其 通过光合作用产物将太阳能转换为生物能,并在此 过程中固定 CO<sub>2</sub>。对农田生态系统进行综合温室效 应评价时,应全面考虑农田生态系统的碳流,不应 仅仅是土壤表观呼吸排放的 CO<sub>2</sub>量,还应涵盖灌 溉、机械和肥料施用等农事活动所造成的 CO<sub>2</sub> 排放 量,以及作物转化为 NPP 的碳量(GWP<sub>NPP</sub>)。本研 究综合考虑农田生态系统的温室气体的源与汇功 能,计算净综合增温潜势<sup>[33-34]</sup>:

Net  $GWP = GWP_{NPP} + GWP_{Import} +$ 

GWP<sub>Soil</sub>+GWP<sub>Export</sub>+GWP<sub>Indirect</sub> (10) 式中:GWP<sub>Import</sub>为来自有机肥或者其他富含C的农 业输入,本研究中为0;GWP<sub>Soil</sub>为土壤直接温室气体 排放的增温潜势,kg/hm<sup>2</sup>;GWP<sub>Export</sub>是从农业生态 系统中移除的收获谷物,kg/hm<sup>2</sup>,本研究中指收获 的玉米籽粒(GWP<sub>Yield</sub>),即玉米籽粒收获后在短时 间内又会被迅速消耗,因此产量不计入增温潜势; GWP<sub>Indirect</sub>为农业投入产生间接排放的增温潜势, kg/hm<sup>2</sup>。若 Net GWP 为负,代表该农田生态系统 为碳汇,反之则为碳源。

1.3.7 农田经济效益估算

农田经济效益估算方法如下:

Net Profit =  $A \times Y \times P - C$  (11) 式中:Net profit 为农田经济效益,元/hm<sup>2</sup>; A 为种 植面积,hm<sup>2</sup>; Y 为玉米产量,kg/hm<sup>2</sup>; P 为玉米的市 场价格,元/kg,玉米的市场价格为 1.90 元/kg (2018年)和 2.20 元/kg(2019年); C 为玉米的生产 成本,元,玉米种子价格为 20 元/kg,氮肥为 2.4 元/kg, 磷肥为 3 元/kg,钾肥为 5 元/kg,硝化抑制剂的价 格为 8 元/kg,脲酶抑制剂的价格为 11.2 元/kg,灌 溉用水价格为 0.55 元/m<sup>3</sup>,柴油为 7.6 元/kg。

1.4 数据处理

应用方差分析(ANOVA)对数据进行处理,处 理间差异的多重比较采用 Least-significant difference(LSD)法。所有数据分析均在 Microsoft Excel 2021和 SPSS 13.0环境下进行,画图采用 Origin 2018。

## 2 结果与分析

## 2.1 农田土壤温室气体排放特征

2.1.1 农田土壤 N2O 排放特征

2018—2019年夏玉米生长季不同处理 N<sub>2</sub>O的 排放通量变化特征如图 1 所示。夏玉米农田土壤 N<sub>2</sub>O的排放通量均为正值,表明夏玉米农田土壤是 N<sub>2</sub>O的排放源。

由图 1 可知:不同年际间土壤 N<sub>2</sub>O 排放的特征 基本一致,即施肥后土壤 N<sub>2</sub>O 排放通量迅速上升, 且较高的排放通量持续约 6 d;各处理 N<sub>2</sub>O 排放峰 均在施肥后一周内出现,降雨后又会出现比较弱的 排放峰;CK 处理 N<sub>2</sub>O 排放通量在整个生长季内均 维持在较低水平,2018 年、2019 年 CK 处理最大排 放通量分别为 59.9 和 151.5  $\mu$ g/(m<sup>2</sup> · h)。LF、SU、 ER 和 HF 在施肥后随着氮肥的促进作用,N<sub>2</sub>O 排放 呈逐渐增加的趋势,在施肥后第 5~6 天达到排放峰 值,此时 HF 处理 N<sub>2</sub>O 排放通量最大,2018 年、2019 年排放峰值分别达到 792.4 和 478.8  $\mu$ g/(m<sup>2</sup> · h)。 两年内 SU 处理 N<sub>2</sub>O 排放通量的峰值为 342.6 和 305.9  $\mu$ g/(m<sup>2</sup> • h),而 ER 处理排放通量的峰值仅 为 220.7 和 221.8  $\mu$ g/(m<sup>2</sup> • h),较 SU 处理分别降 低了 35.6%和 27.5%。2018 年 8 月 20 日及 9 月 20 日均出现一个小峰值,是由于测气前降雨,使土 壤含水量增加,反硝化微生物活性提高,激发了土壤 N<sub>2</sub>O 的生成及排放。直至收获前,N<sub>2</sub>O 排放通量一 直维持在较低水平。

CK 处理在整个生长季内  $N_2O$  排放通量最低, HF 处理排放通量最高,而 ER 相比 SU 处理显著降低,表明增施氮肥会促进土壤  $N_2O$  的排放,添加抑制剂则对  $N_2O$  的排放有显著的抑制作用。

2.1.2 农田土壤 CO2 排放特征

2018—2019 年不同处理夏玉米生长季 CO<sub>2</sub> 的 排放通量如图 2 所示。夏玉米农田土壤 CO<sub>2</sub> 的排 放通量均为正值,表明农田土壤是 CO<sub>2</sub> 的排放源。

由图 2 可知:不同年际间土壤 CO<sub>2</sub> 排放的特征 基本一致,即施肥后土壤 CO<sub>2</sub> 排放通量较高,持续 约10d。在玉米生长旺盛期(7月下旬-8月上旬), 即拔节-抽雄期 CO2 排放通量较高。2019 年 8 月 20 日及9月18日出现排放小高峰,是由于降雨导致土 壤呼吸速率加大。6月15日播种之后,进行一次灌 溉、施肥,加之前茬作物小麦秸秆及根茬为土壤微生 物提供了丰富的碳源,土壤微生物活性增加,CO2 排 放通量较大。HF处理在施肥后 CO<sub>2</sub> 排放峰值最大, 两年排放峰值分别为 493.9 和 657.8 mg/(m<sup>2</sup> • h)。 ER处理排放峰值最低,分别为 402.2 和 432.7  $mg/(m^2 \cdot h)$ 。所有处理在 6 月下旬到 7 月中旬之 间 CO<sub>2</sub> 排放通量较低,约为 300 mg/(m<sup>2</sup> • h)。 7月中旬排放通量逐渐增加并达到峰值。7月下旬 至8月上旬土壤温度显著升高,且此时夏玉米正好 处于拔节期-抽雄开花期,作物生长速度加快,呼吸 速率加大,因此 CO<sub>2</sub> 排放通量最大,2018 年、2019 年各处理排放通量峰值范围分别为 668.6~820.2 和 607.9~778.2 mg/(m<sup>2</sup> • h)。8 月份开始 CO<sub>2</sub> 排放通量逐渐下降,收获时排放通量降至最低,此时 土壤温度较低,土壤呼吸减缓,土壤含水量下降,且 夏玉米处于生长后期,根系活动减少,排放通量范围 仅处于 75.9~206.7 和 42.9~107.2 mg/(m<sup>2</sup> • h)。

在夏玉米生长季内,HF处理CO<sub>2</sub>排放通量 最高,ER处理的CO<sub>2</sub>排放通量显著低于其他 处理。



图 1 夏玉米生长季不同处理下土壤 N<sub>2</sub>O 排放通量

Fig. 1 N2 O emission fluxes under different treatments during summer maize growing seasons

#### 2.1.3 农田土壤 CH4 排放特征

2018—2019年不同处理夏玉米生长季 CH4 的 排放通量如图 3 所示。可知:夏玉米农田土壤 CO2 的排放通量多为负值,表明华北平原玉米农田土壤 是 CH4 的一个较弱的吸收汇。施肥灌溉后,CH4 排放通量出现了正值,是由于此时土壤水分较为充 足,土壤微生物多处于厌氧条件下,抑制了土壤对 CH4 的氧化作用,同时提高了甲烷菌的活性,促进 了 CH4 的产生。2018年7月31日左右出现的 CH4 较大的吸收峰,此时玉米处于快速生长发育时 期,会大量消耗土壤水分和氮素,土壤中硝态氮和铵 态氮的含量减少,土壤处于好气状态,有利于 CH4 被氧化,造成土壤与大气之间 CH<sub>4</sub> 的负浓度梯度,因此出现了 CH<sub>4</sub> 的吸收峰,峰值范围为 $-30.4 \sim -14.8 \ \mu g/(m^2 \cdot h)$ 。

在夏玉米整个生长季内,不同处理之间 CH4 排 放特征基本一致,没有显著差异,在拔节-抽雄开花 期出现 CH4 吸收小高峰。SU、HF 处理施氮水平较 高,抑制 CH4 的氧化,因此 CH4 吸收速率较低。

2.1.4 农田土壤温室气体排放总量

2018 年、2019 年不同处理的  $N_2O$ 、 $CO_2$ 、 $CH_4$ 累积排放量如表 4 所示。可知:不同处理间玉米生 长季  $N_2O$ 的排放总量差异较为显著,随着施氮量的 增加  $N_2O$ 的排放呈现逐渐增加的趋势。2018 年和



图 2 夏玉米生长季不同处理下土壤 CO<sub>2</sub> 排放通量

Fig. 2 CO2 emission fluxes under different treatments during summer maize growing seasons

2019年,CK 处理  $N_2O$  排放总量最低,分别为 0.72 和 1.39 kg/hm<sup>2</sup>;HF 处理  $N_2O$  排放总量最高,分别 为 2.73 和 3.98 kg/hm<sup>2</sup>,平均为 CK 处理的 3.3 倍。施氮量相同的情况下,添加抑制剂显著降低了  $N_2O$  排放,两年间 ER 处理的  $N_2O$  排放总量较 SU 处理降低了 25.5%。

2018 年、2019 年夏玉米生长季内 CO<sub>2</sub> 排放总 量范围分别为 8 594.86~9 759.94 和 8 138.85~ 8 742.47 kg/hm<sup>2</sup>,其中 ER 处理的 CO<sub>2</sub> 排放总量显 著低于同等施氮量的 SU 处理(*P*<0.05),两年间 CO<sub>2</sub> 排放总量分别降低了 10.8%、3.4%。LF、SU 和 HF 3 个处理之间 CO<sub>2</sub> 排放总量没有显著性 差异。

2018 年、2019 年夏玉米生长季内 CH<sub>4</sub> 吸收总 量范围分别为 0.14~0.33 和 0.14~0.34 kg/hm<sup>2</sup>。 HF 处理的施氮量最大,土壤中 CH<sub>4</sub> 氧化细菌的数 量和活性较高,促进了 CH<sub>4</sub> 氧化,CH<sub>4</sub> 吸收量显著 高于其余处理。ER 处理 CH<sub>4</sub> 吸收量较 SU 处理降 低了 35.7%,表明施氮水平相同时添加抑制剂会显 著的降低 CH<sub>4</sub> 的吸收量。







2.2 温室气体排放总量增温潜势(GWP<sub>soil</sub> + GWP<sub>indirect</sub>) 将 2018 年、2019 年夏玉米农田 N<sub>2</sub>O、CO<sub>2</sub>、CH<sub>4</sub> 排放总量统一换算为 CO<sub>2</sub> 当量,可得农田土壤温室 气体增温潜势 GWP<sub>soil</sub>,如图 4 所示。可知:由于农 田 CO<sub>2</sub> 排放量最高,GWP<sub>soil</sub> 以 CO<sub>2</sub> 为主,N<sub>2</sub>O、 CH<sub>4</sub> 贡献较小。玉米生长季内 CK 处理及 ER 处理 的 GWP<sub>soil</sub>维持在较低水平,而 HF 处理 GWP<sub>soil</sub> 均最 高,2018 年、2019 年分别为 10 405.5 和 9 920.8 kg/hm<sup>2</sup>, 平均较 CK 处理高 10.9%。相同施氮水平下,ER 处理的 GWP<sub>soil</sub>显著低于 SU 处理,2 个玉米生长季 GWP<sub>soil</sub>分别为9035.4和9131.7 kg/hm<sup>2</sup>,较SU 处理平均降低8.7%,表明添加抑制剂可以显著减 少土壤温室气体直接排放的增温潜势。

夏玉米全生育期各种农业投入的增温潜势 (GWP<sub>Indirect</sub>)如图 5(a)所示。可知:不同处理 GWP<sub>Indirect</sub>为1633.7~5216.5kg/hm<sup>2</sup>,其中CK处 理由于施肥量较少,GWP<sub>Indirect</sub>最低;LF、SU、ER和 HF处理的GWP<sub>Indirect</sub>分别较CK高出67.2%, 83.5%,83.5%及153.3%。HF处理由于施氮量较高,GWP<sub>Indirect</sub>显著高于其余处理。在所有农业投入

#### 表 4 不同处理下夏玉米农田土壤 N<sub>2</sub>O、CO<sub>2</sub>、CH<sub>4</sub> 累积排放量

Table 4 N2O, CO2 and CH4 cumulative emission quantities of summer-maize

field under different treatments

 $(kg/hm^2)$ 

| 处理<br>Treatment 「 | N₂O 累积排放量                   |        | CO <sub>2</sub> 累积排放量                |            | CH4 累积吸收量                 |        |
|-------------------|-----------------------------|--------|--------------------------------------|------------|---------------------------|--------|
|                   | Cumulative $N_2O$ emissions |        | Cumulative $\mathrm{CO}_2$ emissions |            | Cumulative CH4 absorption |        |
|                   | 2018 年                      | 2019 年 | 2018 年                               | 2019 年     | 2018 年                    | 2019 年 |
| СК                | 0.72 e                      | 1.39 d | 9 635.42 a                           | 8 138.85 b | 0.18 bc                   | 0.14 c |
| LF                | 1.83 c                      | 3.01 c | 9 759.94 a                           | 8 473.30 a | 0.24 b                    | 0.27 b |
| SU                | 2.15 b                      | 3.58 b | 9 639.29 a                           | 8 577.63 a | 0.23 b                    | 0.34 a |
| ER                | 1.49 d                      | 2.85 c | 8 594.86 b                           | 8 288.12 b | 0.14 c                    | 0.23 b |
| HF                | 2.73 a                      | 3.98 a | 9 600.21 a                           | 8 742.47 a | 0.33 a                    | 0.31 a |

注:同列数据不同字母表示差异显著(P<0.05),相同字母表示差异不显著(P>0.05)。下同。

Note: Within the same column, different letters represent significant differences (P < 0.05), while the same letters represent no significant differences (P > 0.05). The same below.



柱形图上不同字母表示差异显著(P<0.05),相同字母表示差异不显著(P>0.05)。下同。

Different letters on the column chart represent significant differences (P < 0.05), while the same letters represent no significant differences (P > 0.05). The same below.

#### 图 4 不同处理下夏玉米农田土壤排放温室气体增温潜势(GWP<sub>soil</sub>)

Fig. 4 Global warming potential of greenhouse gas emissions from summer maize farmland under different treatments



图 5 不同处理下农业投入引起的间接增温潜势(a)及总排放量增温潜势(b)

Fig. 5 Global warming potential based on agricultural input (a) and total emissions (b) under different treatments

中,肥料对 GWP<sub>Indirect</sub>的贡献最大,灌溉次之。除了 CK 处理外,LF、SU、ER 和 HF 处理肥料所造成的间 接排放占 GWP<sub>Indirect</sub>的 54.1%,58.2%,58.2%,69.7%; 灌溉造成的排放占间接排放的 28.4%~31.2%。

将夏玉米全生育期的直接、间接温室气体排放 增温潜势累加可得总排放量的增温潜势,如图 5(b) 所示。可见:不同处理排放总量的增温潜势范围为 10 831.3~14 301.9 kg/hm<sup>2</sup>,由高到低依次为 HF>SU>LF>ER>CK。直接排放对总排放量的 贡献较大,CK、LF、SU、ER和HF处理中直接排放 分别占总排放量的 84.9%,78.2%,76.9%,75.2% 及 71.1%。HF的总排放量显著高于其余几个处 理,是由于其直接和间接排放量均最高。相比 SU 处理,添加抑制剂引起的总排放量的降低主要是由 于降低了土壤温室气体的直接排放造成的,ER的总 排放量为 12 082.1 kg/hm<sup>2</sup>,降低了 6.7%。

## 2.3 净初级生产力增温潜势(GWP<sub>NPP</sub>)及综合温室 效应评价

2018 年、2019 年夏玉米农田净初级生产力增温 潜势(GWP<sub>NPP</sub>)如表 5 所示。由表可知:2018 年和 2019 年 CK 处理的 GWP<sub>NPP</sub>分别为 35 757.2 和 38 851.9 kg/hm<sup>2</sup>,GWP<sub>NPP</sub>显著低于其余处理(P < 0.05)。SU 处理 GWP<sub>NPP</sub>最高,分别为 44 274.9 和 44 399.1 kg/hm<sup>2</sup>,平均较 CK 处理高 19.0%。添加 抑制剂对 GWP<sub>NPP</sub>影响不显著,表现为 ER 处理的与 SU 的 GWP<sub>NPP</sub>无显著差异。HF 处理施氮量最高, 但 GWP<sub>NPP</sub>均低于 SU、ER 处理,GWP<sub>NPP</sub>分别为 41 986.8 和 39 669.4 kg/hm<sup>2</sup>,平均较 SU 处理降低 9.8%,表明施氮过量不能保证经济产量及固碳量的 持续增加。

| 表5 不同处理下净初级生产力增 | 温潜势估算值(GWP_NPP) |
|-----------------|-----------------|
|-----------------|-----------------|

| Table 5 | Estimation | of global | warming | potential | based on |
|---------|------------|-----------|---------|-----------|----------|
|---------|------------|-----------|---------|-----------|----------|

|            |                 | INPP under           | kg/nm-                         |                                   |                    |
|------------|-----------------|----------------------|--------------------------------|-----------------------------------|--------------------|
| 年份<br>Year | 处理<br>Treatment | GWP <sub>Straw</sub> | $\mathrm{GWP}_{\mathrm{Root}}$ | $\mathrm{GWP}_{\mathrm{Exudate}}$ | GWP <sub>NPP</sub> |
|            | СК              | 13 064.0 a           | 4 389.5 a                      | 3 933.3 a                         | 35 757.2 a         |
| 2018       | LF              | 15 109.3 b           | 5076.7b                        | 4 549.1 b                         | 41 355.4 b         |
|            | SU              | 16 176.0 b           | 5435.1 b                       | 4 870.2 b                         | 44 274.9 b         |
|            | ER              | 15 681.3 b           | 5 268.9 b                      | 4 721.3 b                         | 42 921.0 b         |
|            | HF              | 15 340.0 b           | 5 154.2 b                      | 4 618.5 b                         | 41 986.8 b         |
|            | СК              | 14 194.7 a           | 4 769.4 a                      | 4 273.7 a                         | 38 851.9 a         |
|            | LF              | 14 784.0 ab          | 4 967.4 ab                     | 4 451.1 ab                        | 40 464.9 ab        |
| 2019       | SU              | 16 221.3 b           | 5 450.4 b                      | 4 883.9 b                         | 44 399.1 b         |
|            | ER              | 15 620.0 ab          | 5 248.3 ab                     | 4 702.8 ab                        | 42 753.2 ab        |
|            | HF              | 14 493.3 a           | 4 869.8 a                      | 4 363.6 a                         | 39 669.4 a         |

注:GWP<sub>Straw</sub>,秸秆增温潜势;GWP<sub>Root</sub>,地下部分增温潜势;GWP<sub>Exudate</sub>,根系分泌物增温潜势。

Note:  $GWP_{Straw}$ , global warming potential of maize straw;  $GWP_{Root}$ , global warming potential of

roots;  $GWP_{Exudate}$ , global warming potential of exudate.

综合考虑不同处理的排放量及碳固定,计算净 综合增温潜势(Net GWP),结果如图 6 所示。可 知:计算所得的平均 Net GWP 均为负值,表明夏玉 米农田生态系统为大气的碳汇。2018 年、2019 年不 同处理的 Net GWP 范围分别为 - 13 637.6 ~ -9 907.6 和-13 921.1~-9 667.1 kg/hm<sup>2</sup>。CK 处理施肥量低,较低的作物产量及生物量造成了固 碳量的减少。两个夏玉米生长季内,HF的平均 Net GWP 为-10 117.8 kg/hm<sup>2</sup>,施氮量多但并未 获得较高的产量,固碳量低于 SU 及 ER;同时较高 的施氮量使得直接排放和间接排放均有不同程度的 提高,HF 处理 Net GWP 的绝对值显著低于其余处 理。ER 处理的平均 Net GWP 为-13 539.3 kg/hm<sup>2</sup>, 绝对值较 CK 处理高 18.1%,但与 SU 处理没有显



图 6 不同处理下净综合增温潜势(Net GWP)估算值

Fig. 6 Estimation of net global warming potential under different treatments

著差异。ER 处理施肥的同时添加抑制剂,既降低 了土壤温室气体的直接排放,又有增产作用。

计算农业生产及投入可得净利润,并与 Net GWP结合,将两年内5个处理的10对利润-净增温 潜势数据用散点图表示,并分为4个模式,分别是高 收益-高固碳(High profit-high net GWP)、高收益-低固碳(High profit-low net GWP)、低收益-高固碳 (Low profit-high net GWP)以及低收益-低固碳 (Low profit-low net GWP)。2018年、2019年不同 处理的玉米净利润为11579.3~11582.2和 12 766.5~14 173.6 元/hm<sup>2</sup>。HF处理属于低收益-低固碳施肥管理模式,两年净利润分别为 12 471.2 和 11 582.2 元/hm<sup>2</sup>;高施肥量在造成资 源浪费的同时,使温室气体排放量大大增加,且增产 效果不显著。SU、ER处理属于高收益-高固碳管理 模式,SU处理净利润最高,分别是 14 126.0 元/hm<sup>2</sup> 和 14 173.6 元/hm<sup>2</sup>,ER处理净利润与 SU处理无 显著差异。但ER较 SU处理GWP<sub>Soil</sub>、GWP<sub>Indirect</sub>和 Net GWP更低,有利于温室气体减排,适合作为绿 色农业发展模式在华北平原推广。



图 7 不同处理下经济效益-净综合增温潜势模式分类

Fig. 7 Classification of net profit-net global warming potential models under different treatments

## 3 讨论与结论

### 3.1 讨论

氮肥作为农业生产中最大的能源消耗投入,其 对二氧化碳排放的影响不应忽视[35]。但在作物生 产过程中,氮肥的利用效率通常较低[36]。受到环境 和管理措施的限制,通常玉米可以利用的氮肥低于 所施用氮肥的 50%[37],土壤表面约 25%的尿素转 化为 NH<sub>3</sub>并挥发到大气中<sup>[38]</sup>,未被利用的氮不仅会 造成经济损失,也会造成温室气体的大量排放。由 于华北平原过度追求粮食高产,过量施用氮肥导致 大量 N 元素通过 N<sub>2</sub>O 排放、氮淋失和氨挥发损失, 是影响农田土壤 N<sub>2</sub>O 排放的主要因素<sup>[39-40]</sup>。在氮 肥中添加硝化和脲酶抑制剂是抑制硝化过程的重要 措施[41],并被广泛用于农业生产中。本研究表明 ER 的 N<sub>2</sub>O 总排放量比 SU 低 27.6%,2 个玉米生 长季 ER 处理的 GWP<sub>soil</sub> 分别为 9 035.4 和 9 131.7 kg/hm<sup>2</sup>,较 SU 处理分别降低 12.1% 和 5.2%,说明硝化抑制剂和脲酶抑制剂联合施用可以 减少 N<sub>2</sub>O 的排放及 GWP,这与先前的研究结果一 致[42-43]。赵自超等[42]发现硝化和脲酶抑制剂不论 单独使用还是联合使用,均可以显著降低土壤 N<sub>2</sub>O 排放和 CH4 吸收,且联合使用能够使作物增产 6.7%。吴得峰等[44]在玉米田的试验结果表明,在 减量施肥模式的基础上添加硝化抑制剂是一种保 产、减氮、减排的有效措施,在不影响玉米产量的同 时使 N<sub>2</sub>O 的排放量减少 28.1%。目前使用抑制剂 对作物产量的影响报道不一,本研究表明添加抑制 剂未达到提高产量的效果,ER处理与SU处理产量 无显著差异,未对产量造成显著影响,与 Yang 等[45] 结果一致。

本研究表明, 化肥的 GWP 占 GWP<sub>Indirect</sub>的 54.1%~69.7%。1993—2013年,中国粮食种植的 化肥施用量增速是粮食产量增速的 2.29 倍<sup>[46]</sup>。 Tan 等<sup>[47]</sup>通过田间试验得出结论,在冬小麦-夏玉 米轮作系统中减少 30%的氮输入可以显著减少温 室气体排放总量,同时保持粮食产量。如果中国玉 米产区采取优化的氮肥措施,每年可以减少 140 万 t 氮肥和 1 860 万 t 温室气体排放<sup>[48]</sup>。HF 处理施氮 量过多,不仅没有达到提高产量的效果,又增加了直 接排放和间接排放增温潜势,不适宜在华北平原夏 玉米农田推广。 根据本研究中农田净综合增温潜势结果,夏玉 米农田具有碳储存潜力。农田固碳可以增加陆地碳 储存,从而减少大气中的二氧化碳浓度和温室气体 排放<sup>[49]</sup>。秸秆还田是提高农田固碳量的主要途径, 但目前秸秆还田对农田碳平衡的影响结果不一,如 秸秆还田会导致土壤呼吸速率的增加,从而增加碳 排放<sup>[50]</sup>,但不同还田方式可以显著影响碳排放 量<sup>[51]</sup>。需要指出的是,本研究在计算玉米净综合增 温潜势时,考虑到籽粒在收获后又会在短时间内被 消耗掉,因此既不计入固碳量,也不计入排放量,且 本研究假设秸秆全部还田,但在实际生产过程中并 不能做到秸秆的完全利用。

在本研究中,由于试验年限较短,忽略了土壤有 机碳的变化。未来可考虑在试验过程中同步监测土 壤有机质含量及土壤理化性质等。同时,气候因素 (温度、降水)对土壤温室气体排放有显著影响,更重 要的是年际间温度、降水等气候要素变化、极端天气 事件导致的灾害等会极大影响夏玉米产量和生物 量,进而影响年际间碳收支。未来可以将田间试验 数据与长时间序列的气候数据、作物模型和遥感数 据等结合,综合评估区域尺度的农田增温潜势,为中 国农田生态系统应对气候变化提供科学依据和理论 基础。

#### 3.2 结论

本研究经过对夏玉米农田土壤温室气体排放通 量进行监测及生产过程中的温室气体排放增温潜势 计算,得出了不同施肥处理的净综合增温潜势,主要 结论如下:

1)施氮量相同时添加抑制剂,可以显著降低 N<sub>2</sub>O 排放总量及农田土壤温室气体增温潜势 (GWP<sub>Soil</sub>),ER 处理较 SU 处理的 N<sub>2</sub>O 排放总量及 GWP<sub>Soil</sub>分别降低 25.5%及 8.7%。HF 处理 N<sub>2</sub>O 排放总量最高,2018 年、2019 年分别为 2.73 和 3.98 kg/hm<sup>2</sup>,平均为 CK 处理的 3.3 倍。

2)在所有农业投入中,肥料对 GWP<sub>Indirect</sub>的贡献 最大,灌溉次之。LF、SU、ER 和 HF 处理中肥料所 造成的间接排放占 GWP<sub>Indirect</sub>的 54.1%,58.2%, 58.2%,69.7%。HF 处理由于施氮量较高, GWP<sub>Indirect</sub>显著高于其余处理。除 CK 外,灌溉造成 的排放占间接排放的 28.4%~31.2%。

3) HF 处理的 GWP<sub>soil</sub> 及 GWP<sub>Indirect</sub> 均为最高, 较 CK 处理分别高 10.9%和 153.3%。不同处理排 放总量的增温潜势(GWP<sub>soil</sub>+GWP<sub>Indirect</sub>)由高到低 依次为 HF>SU>LF>ER>CK。

4) ER 处理 Net GWP 为一13 539.3 kg/hm<sup>2</sup>, 绝对值较 CK 处理高 18.1%,但与 SU 处理没有显 著差异。ER 处理适量施肥的同时添加抑制剂,能 够保产减排;综合考虑经济效益,ER 与 SU 净利润 无显著差异,适合作为绿色农业发展模式在华北平 原推广。

#### 参考文献 References

- IPCC. Climate change 2021: The physical science basis [R]. Cambridge and New York: Cambridge University Press, 2021.
- [2] 樊翔,张军,王红,刘梅. 农户禀赋对农户低碳农业生产行为的影响: 基于山东省大盛镇农户调查[J].水土保持研究, 2017, 24(1): 265-271 Fan X, Zhang J, Wang H, Liu M. Influence of the household endowment on farmers' low-carbon agricultural production behavior[J]. *Research of Soil and Water Conservation*, 2017, 24(1): 265-271 (in Chinese)
- [3] Vergé X P C, De Kimpe C, Desjardins R L. Agricultural production, greenhouse gas emissions and mitigation potential[J]. Agricultural and Forest Meteorology, 2007, 142(2-4): 255-269
- [4] Gong H R, Li J, Sun M X, Xu X B, Ouyang Z. Lowering carbon footprint of wheat-maize cropping system in North China plain: Through microbial fertilizer application with adaptive tillage [J]. Journal of Cleaner Production, 268
- [5] 田成诗,陈雨.中国省际农业碳排放测算及低碳化水平评价:基于衍生 指标与 TOPSIS 法的运用[J].自然资源学报, 2021, 36(2): 395-410 Tian C S, Chen Y. China's provincial agricultural carbon emissions measurement and low carbonization level evaluation. Based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395-410 (in Chinese)
- [6] 胡乃娟, 史航, 朱利群. 不同麦秸还田方式对周年稻麦轮作农田碳足迹 的影响[J]. 长江流域资源与环境, 2018, 27(12): 2775-2783 Hu N J, Shi H, Zhu L Q. Effects of different straw returning modes on carbon footprint in a rice-wheat rotation system [J]. Resources and Environment in the Yangtze Basin, 2018, 27(12): 2775-2783 (in Chinese)
- [7] 王上,李康利,聂江文,杨亚东,戴华栋,曾昭海.华北平原春绿豆-夏 玉米种植模式经济效益和碳足迹评价[J].中国生态农业学报(中英文), 2020,28(6):910-919

Wang S, Li K L, Nie J W, Yang Y D, Zang H D, Zeng Z H. Economic benefits and carbon footprint of a spring mung bean-summer maize cropping system in the North China Plain[J]. *Chinese Journal of Eco-Agriculture*, 2020, 28(6): 910-919 (in Chinese)

[8] 马怀英,王上,杨亚东,冯晓敏,曾昭海,任长忠,臧华栋,胡跃高.燕 麦与豆科作物间作的产量、经济效益与碳足迹分析[J].中国农业大学学报,2021,26(8):23-32

Ma H Y, Wang S, Yang Y D, Feng X M, Zeng Z H, Ren C Z, Zang H D, Hu Y G. Intercropping of oat with mung bean, peanut, and soybean: Yield advantages, economic benefits and carbon footprints[J]. *Journal* of China Agricultural University, 2021, 26(8): 23-32 (in Chinese)

[9] 张丹,张卫峰.低碳农业与农作物碳足迹核算研究述评[J].资源科学, 2016, 38(7): 1395-1405 Zhang D, Zhang W F. Low carbon agriculture and a review of calculation

methods for crop production carbon footprint accounting [J]. Resources Science, 2016, 38(7); 1395-1405 (in Chinese)

- [10] Hertwich E G, Peters G P. Carbon footprint of nations: A global, tradelinked analysis [J]. Environmental Science & Technology, 2009, 43 (16): 6414-6420.
- [11] Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, Sun Y X, Peng X L, Zhang J W, He M R, Zhu Y J, Xue J Q, Wang G L, Wu L, An N, Wu L Q, Ma L, Zhang W F, Zhang F S. Producing more grain with lower environmental costs [J]. Nature, 2014, 514 (7523): 486-489
- [12] Cheng K, Yan M, Nayak D, Pan G X, Smith P, Zheng J F, Zheng J W. Carbon footprint of crop production in China: An analysis of National statistics data[J]. The Journal of Agricultural Science, 2015, 153(3): 422-431
- [13] 陈绍民,杨硕欢,张保成,王丽,胡田田.不同水肥条件下夏玉米/冬小 麦农田生态系统碳平衡研究[J].农业机械学报, 2021, 52(5): 229-238 Chen S M, Yang S H, Zhang B C, Wang L, Hu T T. Carbon balance in summer maize/winter wheat farmland ecosystem under different water and fertilizer conditions [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 229-238 (in Chinese)
- [14] 齐鹏,王晓娇,姚一铭,陈晓龙,武均,蔡立群.不同耕作方法和施氨量对旱作农田土壤 CO<sub>2</sub> 排放及碳平衡的影响[J]. 草业学报, 2021, 30 (1): 96-106
  Qi P, Wang X J, Yao Y M, Chen X L, Wu J, Cai L Q. Effects of different tillage practices and nitrogen application rate on carbon dioxide emissions and carbon balance in rain-fed maize crops [J]. Acta Prataculturae Sinica, 2021, 30(1): 96-106 (in Chinese)
- [15] 刘巽浩,徐文修,李增嘉,褚庆全,杨晓琳,陈阜.农田生态系统碳足 迹法:误区、改进与应用,兼析中国集约农作碳效率[J].中国农业资源 与区划,2013,34(6):1-11 Liu X H, Xu W X, Li Z J, Chu Q Q, Yang X L, Chen F. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China's intensive farming [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6): 1-11 (in Chinese)
- [16] 牛海生,李大平,张娜,郝维维,徐文修,张娜,张洋,赵有来,胡春 辉.不同灌溉方式冬小麦农田生态系统碳平衡研究[J].生态环境学报, 2014,23(5):749-755
  Niu H S, Li D P, Zhang N, Hao W W, Xu W X, Zhang N, Zhang Y, Zhao Y L, Hu C H. Effect of irrigation modes on carbon budget in winter wheat field[J]. Ecology and Environmental Sciences, 2014, 23 (5):749-755 (in Chinese)
- [17] 张哲,司鹏飞,张旭,冯良山,董雯怡,刘恩科,冯晨,张燕卿,孙占祥.风沙半干旱区不同时期覆膜对玉米田固碳及碳平衡的影响[J].中国农学通报,2020,36(30):40-48 Zhang Z, Si P F, Zhang X, Feng L S, Dong W Y, Liu E K, Feng C, Zhang Y Q, Sun Z X. Film mulching during different periods: Effects on carbon fixation and carbon balance of maize field in aealian semi-arid region. Chinese Agricultural Science Bulletin, 2020, 36(30): 40-48 (in Chinese)
- [18] 同翠萍,张玉铭,胡春胜,董文旭,王玉英,李晓欣,秦树平.不同耕作 措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势[J].中国生 态农业学报,2016,24(6):704-715
  Yan C P, Zhang Y M, Hu C S, Dong W X, Wang Y Y, Li X X, Qin S
  P. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. *Chinese Journal of Eco-Agriculture*, 2016, 24(6):704-715 (in Chinese)
- [19] 王玉英,李晓欣,董文旭,张玉铭,秦树平,胡春胜. 华北平原农田温 室气体排放与减排综述[J].中国生态农业学报,2018,26(2):167-174

Wang Y Y, Li X X, Dong W X, Zhang Y M, Qin S P, Hu C S. Review on greenhouse gas emission and reduction in wheat-maize double cropping system in the North China Plain [J]. *Chinese Journal of Eco-Agriculture*, 2018, 26(2), 167-174 (in Chinese)

[20] 郑诗然,胡琦,和骅芸,邢梦媛,高浩然,刘媛媛,马雪晴,潘学标. 1961—2020 年华北平原冬小麦-夏玉米生长季内光能资源时空变化特征[J].中国农业大学学报,2022,27(1):26-37 Zheng S R, Hu Q, He H Y, Xing M Y, Gao H R, Liu Y Y, Ma X Q, Pan X B. Temporal and spatial variation characteristics of radiation in winter wheat-summer maize growing season in the North China Plain

during 1961-2020[J]. Journal of China Agricultural University, 2022, 27(1): 26-37 (in Chinese)

- [21] Song C C, Yan B X, Wang Y S, Wang Y Y, Lou Y J, Zhao Z C. Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China[J]. Chinese Science Bulletin, 2003, 48(24), 2749-2753
- [22] 宋利娜,张玉铭,胡春胜,张喜英,董文旭,王玉英,秦树平.华北平原 高产农区冬小麦农田土壤温室气体排放及其综合温室效应[J].中国生 态农业学报,2013,21(3):297-307

Song L N, Zhang Y M, Hu C S, Zhang X Y, Dong W X, Wang Y Y, Qin S P. Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China Plain[J]. *Chinese Journal of Eco-Agriculture*, 2013, 21 (3): 297-307 (in Chinese)

- [23] IPCC. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate Change 2013: The Physical Science Basis[R]. Cambridge University Press Cambridge, United Kingdom and New York NY, USA, 2013
- [24] Tian S Z, Ning T Y, Zhao H X, Wang B W, Li N, Han H F, Li Z J, Chi S Y. Response of CH<sub>4</sub> and N<sub>2</sub> O emissions and wheat yields to tillage method changes in the North China Plain[J]. PLoS One, 2012, 7(12): e51206
- [25] 陈舜,逯非,王效科.中国氮磷钾肥制造温室气体排放系数的估算[J].
   生态学报,2015,35(19):6371-6383
   Chen S, Lu F, Wang X K. Estimation of greenhouse gases emission

factors for China's nitrogen, phosphate, and potash fertilizers[J]. Acta Ecologica Sinica, 2015, 35(19); 6371-6383 (in Chinese)

- [26] Lal R. Carbon emission from farm operations [J]. Environment. International, 2004, 30(7): 981-990
- [27] 袁宝荣, 聂祚仁, 狄向华, 左铁镛. 中国化石能源生产的生命周期清单 (Ⅱ): 生命周期清单的编制结果[J]. 现代化工, 2006, 26(4): 59-61 Yuan B R, Nie Z R, Di X H, Zuo T Y. Life cycle inventories of fossil fuels in China (Ⅱ): Final life cycle inventories[J]. Modern Chemical Industry, 2006, 26(4): 59-61 (in Chinese)
- [28] West T O, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture. Comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1-3): 217-232
- [29] Dubey A, Lal R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA[J]. Journal of Crop Improvement, 2009, 23(4): 332-350
- [30] Bolinder M A, Janzen H H, Gregorich E G, Angers D A, VandenBygaart A J. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada [J]. Agriculture, Ecosystems & Environment, 2007, 118(1-4), 29-42
- [31] Amos B, Walters D T. Maize root biomass and net rhizodeposited carbon
   [J]. Soil Science Society of America Journal, 2006, 70(5); 1489-1503
- [32] Gregory P J. Roots, rhizosphere and soil: The route to a better understanding of soil science? [J]. European Journal of Soil Science, 2006, 57(1): 2-12
- [33] Huang J X, Chen Y Q, Sui P, Gao W S. Estimation of net greenhouse

gas balance using crop- and soil-based approaches: Two case studies[J]. Science of the Total Environment, 2013, 456-457(jul.1), 299-306

- [34] Smith P, Lanigan G, Kutsch W L, Buchmann N, Eugster W, Aubinet M, Ceschia E, Béziat P, Yeluripati J B, Osborne B, Moors E J, Brut A, Wattenbach M, Saunders M, Jones M. Measurements necessary for assessing the net ecosystem carbon budget of croplands[J]. Agriculture, Ecosystems & Environment, 2010, 139(3); 302-315
- [35] Liu W W, Zhang G, Wang X K, Lu F, Ouyang Z Y. Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution[J]. Science of the Total Environment, 2018, 645, 1296-1308
- [36] Sun H J, Zhang H L, Powlson D, Min J, Shi W M. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine [J]. Field Crops Research, 2015, 173, 1-7
- [37] Drury C F, Yang X M, Dan Reynolds W, Calder W, Oloya T O, Woodley A L. Combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields[J]. Journal of Environmental Quality, 2017, 46(5): 939-949
- [38] 宋涛,尹俊慧,胡兆平,王亮亮,张强,陈清,曹文超. 脲酶/硝化抑制 剂减少农田土壤氮素损失的作用特征[J].农业资源与环境学报,2021, 38(4):585-597 Song T, Yin J H, Hu Z P, Wang L L, Zhang Q, Chen Q, Cao W C.

Characteristics of urease/nitrification inhibitors in reducing nitrogen losses in farmland soils [J]. Journal of Agricultural Resources and Environment, 2021, 38(4): 585-597 (in Chinese)

- [39] Huang J X, Chen Y Q, Pan J, Liu W R, Yang G L, Xiao X P, Zheng H B, Tang W G, Tang H M, Zhou L J. Carbon footprint of different agricultural systems in China estimated by different evaluation metrics [J]. Journal of Cleaner Production, 2019, 225, 939-948
- [40] Gao F, Li B, Ren B Z, Zhao B, Liu P, Zhang J W. Effects of residue management strategies on greenhouse gases and yield under double cropping of winter wheat and summer maize[J]. Science of the Total Environment, 2019, 687: 1138-1146
- [41] Yang Y J, Meng T Z, Qian X Q, Zhang J B, Cai Z C. Evidence for nitrification ability controlling nitrogen use efficiency and N losses via denitrification in paddy soils[J]. Biology and Fertility of Soils, 2017, 53(3): 349-356
- [42] 赵自超,韩笑,石岳峰,吴文良,孟凡乔. 硝化和脲酶抑制剂对华北冬 小麦-夏玉米轮作固碳减排效果评价[J]. 农业工程学报,2016,32(6); 254-262

Zhao Z C, Han X, Shi Y F, Wu W L, Meng F Q. Effect of nitrification and urease inhibitor on carbon sequestration and greenhouse gas emissions in winter wheat and summer maize rotation system in North China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 254-262 (in Chinese)

- [43] 郝小雨,周宝库,马星竹,高中超. 氮肥管理措施对黑土玉米田温室气体排放的影响[J]. 中国环境科学, 2015, 35(11): 3227-3238
  Hao X Y, Zhou B K, Ma X Z, Gao Z C. Effects of nitrogen fertilizer management on greenhouse gas emissions from maize field in black soil
  [J]. China Environmental Science, 2015, 35(11): 3227-3238 (in Chinese)
- [44] 吴得峰,姜继韶,高兵,刘燕,王蕊,王志齐,党廷辉,郭胜利,巨晓 棠. 添加 DCD 对雨养区春玉米产量、氧化亚氮排放及硝态氮残留的影响[J]. 植物营养与肥料学报, 2016, 22(1): 30-39
  Wu D F, Jiang J S, Gao B, Liu Y, Wang R, Wang Z Q, Dang T H, Guo S L, Ju X T. Effects of DCD addition on grain yield, N<sub>2</sub> O emission and residual nitrate-N of spring maize in rain-fed agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 30-39 (in Chinese)
- [45] Yang L, Wang L G, Li H, Qiu J J, Liu H Y. Impacts of fertilization

alternatives and crop straw incorporation on N<sub>2</sub> O emissions from a spring maize field in northeastern China [J]. Journal of Integrative Agriculture, 2014, 13(4); 881-892

- [46] 邓明君, 邓俊杰, 刘佳宇. 中国粮食作物化肥施用的碳排放时空演变与 碱排潜力[J]. 资源科学, 2016, 38(3): 534-544
  Deng M J, Deng J J, Liu J Y. On the space-time evolution of carbon emissions and reduction potential in Chinese grain crop fertilizer application[J]. Resources Science, 2016, 38(3): 534-544 (in Chinese)
- [47] Tan Y C, Xu C, Liu D X, Wu W L, Lal R, Meng F Q. Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain[J]. Field Crops Research, 2017, 205: 135-146
- [48] Wu L, Chen X P, Cui Z L, Zhang W F, Zhang F S. Establishing a regional nitrogen management approach to mitigate greenhouse gas emission intensity from intensive smallholder maize production[J]. PLoS One, 2014, 9(5); e98481
- [49] Clay D E, Chang J, Clay S A, Stone J, Gelderman R H, Carlson G C,

Reitsma K, Jones M, Janssen L, Schumacher T. Corn yields and notillage affects carbon sequestration and carbon footprints[J]. Agronomy Journal, 2012, 104(3): 763-770

- [50] 张莉,王婧,逄焕成,张珺穜,郭建军,董国豪. 短期秸秆颗粒还田对 小麦-玉米系统作物产量与土壤呼吸的影响[J].应用生态学报,2018, 29(2): 565-572 Zhang L, Wang J, Pang H C, Zhang J T, Guo J J, Dong G H. Effects of short-term granulated straw incorporation on grain yield and soil respiration in a winter wheat-summer maize cropping system[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 565-572 (in Chinese)
- [51] 田冬,高明,黄容,吕盛,徐畅. 油菜/玉米轮作农田土壤呼吸和异养呼吸对秸秆与生物发还田的响应[J]. 环境科学,2017,38(7):2988-2999 Tian D, Gao M, Huang R, Lü S, Xu C. Response of soil respiration and heterotrophic respiration to returning of straw and biochar in rape-maize rotation systems[J]. Environmental Science, 2017, 38(7): 2988-2999 (in Chinese)

责任编辑:杨爱东



第一作者简介:和骅芸,博士研究生,现就读于中国农业大学。本科毕业于中国农业大学应用气象 系。博士研究生期间曾获得一等学业奖学金和二等学业奖学金。研究方向为气候变化及其影响、农 业减排与碳中和。参加国家重点研发计划项目有夏玉米应对气候变化的关键技术效应与适应性栽 培途径研究和半干旱风沙区蓄水保土与高效用水技术研究。作为第一作者在 Field Crops Research、 Theoretical and Applied Climatology 发表 SCI 收录论文 2 篇,在《中国农业气象》上发表论文 2 篇, 参与并获得软件著作权 7 项。



通讯作者简介:胡琦,博士,副教授,中国农业大学资源与环境学院硕士生导师。主要研究领域为气候变化及其影响、农业减灾、二十四节气传统文化与科学。近五年主持或参与多项国家级课题,获得神农中华农业科技奖二等奖1项。以第一或通讯作者在 Field Crops Research、Applied Geography、 International Journal of Climatology 等国内外期刊发表论文 30 余篇,多篇文章入选"精品期刊顶尖论文平台——领跑者 5000(F5000)"。主编教材《应用气候学实习》一部,获得软件著作权 10 余项。