基于整数小波变换和改进零树编码的图像压缩方法

杜承进 叶海建 梅树立 杨 莉

(中国农业大学计算机网络中心)

摘 要 研究了基于整数小波变换和改进零树编码的图像压缩方法:先进行整数小波变换,将图像变换到小 波域,再用改进的零树编码对图像进行压缩。给出了试验结果以及与 EZW 压缩方法的比较,结果表明,整数 小波变换和改进零树编码相结合应用于图像压缩是有效的,在一定程度上能缩短计算时间,并提高峰值信噪 比。

关键词 小波变换;零树编码;图像压缩;峰值信噪比;算法 中图分类号 TP 301.6; TP 317.4

Image Compression Based on Integer Wavelet Transforming and Improved Zero Tree Encoding

Du Chengjin, Ye Haijian, Mei Shuli, Yang Li (Computer & Network Center, China Agricultural University, Beijing 100083, China)

Abstract An approach to compress in ages using Integer W avelet Transform ing (WT) was described, which is more suitable for image compression An image from time domain to wavelet domain was transformed through Integer W avelet Transform ing. Those coefficients with improved zero tree encoding were encoded W avelet-D ifference-R eduction algorithm which is an image codec based on index coding Finally, experimental results were listed compared with EZW compression method. The results indicate that it is efficient in image compression to combine Integer W avelet Transform ing with improved zero tree encoding. The method can decrease the computing time and improve the Peak Signal no Noise Ratio to some extent

Key words integer wavelet transforming; zero tree encoding; image compression; peak signal to noise ratio; algorithm

多媒体技术和 Internet 的应用和发展所面临的主要问题之一就是解决对庞大图像数据信息的表示、传输和存储。为了达到令人满意的视觉和传输效果,有效地进行图像数据压缩编码, 是需要解决的关键技术之一。

传统的傅里叶变换只能连接时域和频域,不能对信号进行空间局域化分析,而实践中往往 需要对处于不同频率空间的任一时刻信号作不同方式的处理。基于小波变换的图像压缩编码 方法属于第 2 代编码方法,它把时域,频域和空间域有机的结合起来。小波变换的引进开阔了 人们的视野。

收稿日期: 2001-10-12

2

杜承进,北京清华东路 17 号 中国农业大学(东校区)215 信箱, 100083

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

对基于小波变换的静止及序列图像压缩已经进行了深入的研究,并开始了初步的应用,尤 其是嵌入式零树编码技术¹¹的出现,大大提高了图像压缩比,但是一般情况下构造的小波系数 都是浮点数,导致了小波变换后的系数也为浮点数。笔者以"提升"算法¹²和改进的零树编码方 法(W avelet-D ifference-Reduction algorithm, WDR)为基础,提出将基于"提升"算法的基数小 波变换和WDR 相结合的图像压缩方法,实现了整数小波变换(WT),既保持了原有的小波特 性,又克服了第1代小波所存在的局限性,实现了小波快速算法。同时,在整数小波变换的基础 上,采用WDR 编码,得到了比较好的压缩结果。

1 整数小波变换(WT)

传统小波由同一母函数经过平移和伸缩运算后得到不同分辨率下的小波基函数。小波函数被定义为在 $L^2(R)$ 空间上的母小波 $\Psi(x)$ 的二进伸缩和平移,即小波函数为: $\Psi_{k,k}(x) = \Psi(2_x^{i} - k)$,被称之为第1代小波。在实际应用中第1代小波存在一些问题:1)信号经过小波变换后产生的是浮点数,受计算机有限字长的影响,往往不能精确地重构信号;2)对图像的尺寸有要求,并不能对所有尺寸的图像进行变换;3)对内存的需求量较大。这样构造的小波基函数难以得到其整数表示形式。为克服上述问题,引入另外一种小波实现算法——"提升"算法^[2]。1.1 小波变换的"提升"算法

"提升"算法是由W in Sweldens等人提出的一种新的小波构造方法,它在构造小波的方式上不是用傅里叶变换和基于傅里叶变换的尺度收缩,而是直接通过简单地分裂、预测和更新等一系列步骤来完成对一列数字信号的变换。"提升"算法的基本思想是将现有的小波滤波器分解成基本的构造模块,分步骤完成小波变换。因此,可以将小波变换分解成 3 个过程:分裂 (split)、预测(predict)和更新(update)。

1) 分裂。将输入信号 s_i 分为 2 个较小的子集 s_{i-1} 和 d_{i-1} , d_{i-1} 也称为小波子集。最简单的分 裂方法是将输入信号 s_i 根据奇偶性分为 2 组, 对应于这种分裂所产生的小波被称之为懒小波 (L azy W avelet), 分裂过程表示为 $F(s_i) = (s_{i-1}, d_{i-1})$, 其中 $F(s_i)$ 为分裂过程。

2) 预测。在基于原始数据相关性的基础上, 用偶数序列 *sie* 1的预测值 *P* (*sie* 1) 去预测(或者 内插) 奇数序列 *die* 1, 即将滤波器 *P* 对偶数信号作用以后作为奇信号的预测值, 奇信号的实际 值与预测值相减得到残差信号。实际中, 虽然不可能从子集 *sie* 1中准确地预测子集 *die* 1, 但是 *P* (*sie* 1) 有可能很接近 *die* 1, 因此可以使用 *P* (*sie* 1) 和 *die* 1的差来代替原来的 *die* 1, 这样产生的 *die* 1比原来的 *die* 1包含更少的信息。于是得到

 $d_{i-1} = d_{i-1} - P(s_{i-1}) \tag{1}$

这里, 已经可以用更小的子集 *si*-1和小波子集 *di*-1来代替原信号集 *si*。重复分割和预测过程, 经 *n* 步以后原信号集可用{*sn*, *dn*, ..., *s*1, *d*1}来表示。

3) 更新。为了使原信号集的某些全局特性在其子集 s_{i-1} 中继续保持, 例如, 希望分解后的 子图像 s_{i-1} 仍然保持原来整个图像的亮度值, 即 s_{i-1} 和原图有相同的像素平均亮度值, 必须进 行更新。更新的思想是要找一个更好的子集 s_{i-1} , 使得它保持原图的某一标量特性Q(x) (例如 均值、消失矩等不变), 即有 $Q(s_{i-1}) = Q(s_i)$ 。可以利用已经计算的小波子集 d_{i-1} 对 s_{i-1} 进行更 新, 从而使得后者保持特性Q(x), 即要构造一个算子U 去更新 s_{i-1} 。定义如下:

$$s_{i-1} = s_{i-1} + U(d_{i-1})$$

69

分解和重构见图 1。

1.2 整数小波变换

基于提升算法的小波分解操作, 其输出结果仍然为小数。从式(1)和(2)可以看出, 输出结果的小数部分是由其中的"预测 '和"更新 '滤波器引入的, 对其取整即可得到整数变换结果, 取整操作相当于对原来的小波滤波器系数作了很小的改动, 但是小波分解的特性仍然保留。具体公式为 $d_{t-1} = d_{t-1} - P(s_{t-1})$, $s_{t-1} = s_{t-1} + U(d_{t-1})$ 。逆变换仅仅需要将上面"+ '和"- "互换。

2 WDR 编码

2.1 WDR 编码基础

WDR 编码涉及 2 个基本概念, 即差分编码和二进简化。

1) 差分编码。差分编码是指对相邻元素之间的差值进行编码。首先对原始数据进行排序, 使数据集按单调递增序列排序, 然后通过差分对比原始值小得多的数据进行编码, 从而可以节 省存贮空间。例如: 集合 so= {1, 2, 5, 36, 42}, 则差分集合 si= {1, 1, 3, 31, 6}。只要保持第 1 个 值相同就完全可以由差分集合 si 恢复原始集合 so, 因此差分集合 si 和原始集合 so 代表的是同 样的数据信息。

2) 二进简化。二进简化是指用最少的二进制位数来表示正整数。通过二进简化去掉所有的用二进制表示正整数的最前面的"0"以及最前面的"1"。如对正整数 19 进行二进简化为: (19) 10= (10011) 2, 进行二进简化后就可以用 0011 来表示。同理上面的差分集合 *s*1= {1, 1, 3, 31, 6}, 进行二进简化后就可以用 *s*2= {, , 1, 1111, 10}来表示。

因为集合 s1 中所有的数都是正整数,对二进简化的反操作就是在各个二进简化后的集合 s2 中的二进制数前加上"1 ¹位,这样可以恢复原始数据集 s1,所以二进简化后的集合 s2,差分集 合 s1 和原始集合 s0 代表同样的数据信息。

2.2 WDR 算法

预定义以下 3 种小波系数列表, LSC (List of significant coefficients), LTP (List Temporary)和LIC (List of insignificant coefficients)。开始时列表LSC 和LTP 是空的, 而LIC 中则包含了所有按精度从粗到细排列的小波变换系数。同时选取合适的初始门限值*T*, 使不等式 $|X_{+}| < 2T$ 对所有的小波系数都成立, 并输出初始门限值 *T*。

搜索。在搜索过程中,所有相对于门限值 *T* 的重要小波系数都将从列表L IC 中移到列表 L T P 中。设 s₀ 是这些重要小波系数在列表L IC 中的索引值的集合,输出经过差分和二进简化 的集合 s₂,同时根据小波系数的正负值用正负号把各个标识符分开。例如,集合 s₀= {1, 2, 5, 36, 42}, 如果这些索引值所表示的小波系数的正负号为" + , - , + , + , - ", 那么集合 s_2 的输 出结果是" + - 1+ 1111+ 10- "。对列表L IC 中的小波系数的索引值进行更新, 即如果 X_3 移 到列表L TP 中, 那么所有的在 X_3 以后的小波系数的索引值都要减 1。

细化。细化前,LSC 中的小波系数值的区间范围为[0,2*T*),在细化过程中,那些落在区间 [0,*T*)内的小波系数值的细化值为"0",而那些落在区间[*T*,2*T*)内的小波系数值的细化值则 为"1",输出这些细化值"0"或"1"。如,在LSC 中的小波系数的区间为[32,64),在细化过程中, 将对小波系数是落在区间[32,48)中,还是区间[48,64)作出判断,如果是落在[32,48)中则输 出值为"0",否则为"1"。要注意的是,在第1轮搜索和细化过程中,并没有细化值的输出,因为 此时列表LSC 还是空的,那些在搜索过程中得到的重要小波系数仅在列表LTP 中存在。

把列表LTP 中的值添加到列表LSC 中, 即LSC=LSC LTP, 并重置列表LTP 为空, 门限值 T 除以 2, 接着进行第 2 轮搜索和细化。当达到给定的压缩比要求时, 编码结束。 每一轮的输出结果都采用了自适应算术编码。

3 实例

使用 256 级灰度 512×512 大小的标准测试图像Lena 和Barb, 小波变换采用文献[1]中的双正交小波滤波器, 对图像进行 6 级小波分解。图像质量评价规则采用:

1) 均方差
$$\sigma_{\epsilon}^2 = \frac{1}{N} (x_i - x_i)^2$$

2) 峰值信噪比 $P = 10 \lg \frac{255^2}{\sigma_{\epsilon}^2}$

其中: $x_i \, n \, x_i$ 分别表示原图像和解码图像在同一像素点的灰度值, N 为图像像素点的个数。表 1 为不同压缩比下, WDR 算法与 Shap rio 的 EZW 算法对标准图像L ena 和B arb (512 × 512 黑 白图像)压缩结果的比较。

图 2 给出了相应于不同压缩比处理后得到的L ena 图像。可见, 在压缩比很高时, 图像质量仍然很好。 这说明将整数小波变换和WDR 编码相结合应用于图像压缩可以取得较为满意的效果。

标准图像	算法	规则							
			8 1	16 1	32 1	64 1	128 1	256 1	512 1
Lena	WDR	Р	39.60	36.48	33.46	30. 53	27.92	25.72	23.61
		O_{ϵ}^2	7.13	14.61	29.31	57.51	105.03	174.08	282.96
	EZW	Р	39.55	36.28	33.17	30.23	27.54	25.38	23.63
		O_{ϵ}^2	7.21	15.32	31.23	61.67	114.50	188.30	281.70
Barb	WDR	Р	36.43	31.36	27.33	24.86	23.63	22.65	21.62
		σ_{ϵ}^2	14.80	47.59	120.34	212.32	281.83	353.28	447.84
	EZW	Р	35.14	30.53	26.77	24.03	23.10	21.94	20.75
		O_{ϵ}^2	19.92	57.57	136.80	257.10	318.50	416.20	546.80

表 1 WDR 算法及 EZW 算法对 Lena 和 Barb 图像编码结果比较

图 2 不同压缩比处理后得到的 Lena 图像

4 结束语

将整数小波变换和WDR 编码相结合应用于图像压缩是有效的,在一定程度上能提高峰值信噪比(PSNR)。由于采用了"提升"算法,可以分步实现小波变换,所以降低了运算复杂度,提高了计算速度。

参考文献

- Shap iro JM. Embedded in age coding using zerotrees of wavelet coefficients IEEE Trans on Signal Processing, 1993, 41(12): 3445~ 3463
- 2 Sweldens W. The lifting scheme: a custom design construction of biorthogonal wavelets Journal of Appl & Comput Hamonic Analysis, 1996, 3(2): 186~ 200
- 3 Tian Jun, Wells Jr, Raymond O. An lossy in age codec based on index coding Proceedings of IEEE Data Compression Conference, 1996, 40(22): 2035~ 2074