低温下水稻的薄层干燥模型

李 栋 毛志怀 曹崇文

(中国农业大学机械工程学院)

摘 要 进行了低温下水稻的薄层干燥试验,建立了薄层干燥数学模型。试验结果表明,预测值与实测值一致性较好,所建数学模型可用于描述低温下水稻的薄层干燥。

关键词 水稻; 干燥; 模型

分类号 S 226.600.1

Study on Thin Layer Drying Model of Paddy in Low Temperature

LiDong Mao Zhihuai Cao Chongwen (College of Machinery Engineering, CAU)

Abstract The method of thin layer drying experiment is described. Thin layer paddy drying experiments in low temperature were carried out on a test rig. Effect of different parameters on the drying rate of paddy is investigated and a thin layer drying model in low temperature for paddy has been developed.

Key words paddy; drying; model

为获取低温下水稻薄层干燥的技术数据,确定风温和相对湿度等参数对干燥速率的影响程度,笔者选择薄层干燥模型[1,2],并进行了试验验证,以便模拟各种干燥机和干燥系统。

1 试验方法

采用四川省的籼稻, 试验前人工加湿, 含水率(湿基) 22%。 试验前对每个样品均用快速水分测定仪进行测定, 要求含水率误差小于 0.5%。物料盘容纳水稻谷粒 240 g, 风温由温控仪自动控制, 精度 ± 0.5 。 试验开始后, 每隔 10 m in 测一次样品质量, 当含水率(湿基) 小于 15%时停止试验, 每次试验取得的点数不少于 15 个。 试验参数: 初始含水率(湿基) 22%; 风温为 15, 25, 30 ; 对应热风相对湿度为 26%, 14%, 12%; 风速 0.35 m • s 113]。

对以上参数进行单因素试验, 用试验测得的质量求出水稻谷粒的含水率, 再计算含水率之比 n, $n = (w_t, w_s)/(w_t, w_s)$, %。其中 w_t , 为 t 时刻稻谷含水率, w_t 。为稻谷平均含水率, w_t 。为稻谷初始含水率。

2 试验结果与分析

图 1 示出初始含水率(湿基)为 22%、风速为 0.35 $\mathbf{m} \cdot \mathbf{s}^{-1}$ 、风温 θ 分别为 15, 25 和 30 时, n 与干燥时间 t 的关系。可以看出风温 θ 对 n 的影响较大。在一定风温下,随着 t 的延长, n

收稿日期: 1999-09-17

李 栋, 北京清华东路 17 号 中国农业大学(东校区) 213 信箱, 100083

逐渐减小。在相同的干燥时间内, θ 越高, η ,越小。

3 薄层干燥的数学描述

由图 1 可以看出, η_t 与干燥时间 t 呈 \gtrsim_{70} 指数关系, 故选择以下 2 种模型进行拟合, 式中 k, N 为因数。

$$\eta_{v} = \exp(-kt)$$
 (1)

$$\eta_{v} = \exp\left(-kt^{N}\right) \tag{2}$$

为确定一种与试验结果相吻合的模型,分别对方程(1)和(2)取对数,得

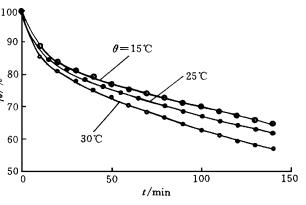


图 1 不同风温 θ 下 η_t 与干燥时间 t 的关系

$$\ln \eta_{k} = -kt \tag{3}$$

$$\ln\left(-\ln \eta_{k}\right) = N \ln t + \ln k \tag{4}$$

图 2 和图 3 分别示出根据试验数据得出的不同风温下 $\ln n$ 与 t 及 $\ln (-\ln n)$ 与 $\ln t$ 的关系。可以看出, $\ln n$ 与 t 是曲线关系(图 2), 故舍弃方程(1); $\ln (-\ln n)$ 与 $\ln t$ 是线性关系(图 3), 且可得以下方程:

$$\ln\left(-\ln\eta_{v}\right) = 0.4966541\ln t - 3.0514541 \quad \theta = 30 \tag{5}$$

$$\ln \left(-\ln \eta_{v} \right) = 0.500 \, 114 \, 3\ln t - 3.188 \, 007 \, 4 \quad \theta = 25$$
 (6)

$$\ln\left(-\ln \eta_{v}\right) = 0.5152709 \ln t - 3.3571034 \quad \theta = 15 \tag{7}$$

方程(5),(6)和(7)都满足方程(4)的形式,故选择方程(2)作为低温下水稻的薄层干燥模型。

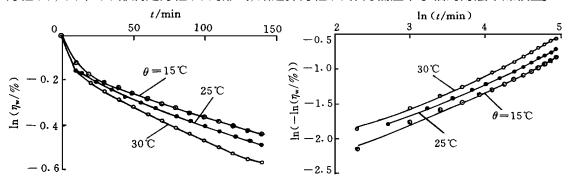


图 2 不同风温 θ 下 $\ln \eta$ 与干燥时间 t 的关系

图 3 不同风温 θ 下 $\ln (-\ln \eta)$ 与 $\ln t$ 的关系

由方程(5), (6) 和(7) 分别得出 k 和N 与风温 θ 和热风相对湿度 H, 的关系 $(\mathbf{a}\ 1)$ 。根据表 1 中数据求得方程

$$k = 0.0140747 + 0.0065207 H_r + 0.0010837 \theta$$
 (8)

$$N = 0.2978681 + 1.0848842H_{r} - 1.5090518H_{r}^{2} + 0.0029754\theta$$
 (9)

θ/	H 1/%	k	N
15	26	0. 034 836 018	0. 515 270 9
25	14	0. 041 253 991	0. 500 114 3
30	12	0. 047 290 109	0. 496 654 1

表 1 k,N 与风温 θ 热风相对湿度 H , 的关系

4 模型方程的验证

当风速为 0.35 m • s ·, 初始含水率(湿基) 为 22%, 风温 θ 为 20 , 热风相对湿度 H · 为 24% 时, 试验值与从方程(2), (8) 和(9) 得出的预测值 的比较曲线见图 4。可以看出, 试验值与预测值的 一致性较好, 最大相对偏差为 1.5%, 因此该方程 及所选因数可用来描述低温下水稻的薄层干燥。

5 结 论

- 1) 低温下水稻的薄层干燥可以用模型 $n = \exp(-kt^N)$ 来描述;
- 2) 在一定风速下, 风温和热风相对湿度对低温下水稻薄层干燥的影响较大。

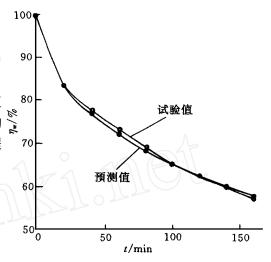


图 4 相同条件下试验值与预测值的比较

参考文献

- 1 毛志怀主编 农产品干燥机理、工艺与技术——曹崇文论文选编 北京: 中国农业大学出版社, 1998 177~ 184
- 2 俞微微 小麦薄层和深床干燥的试验研究: [学位论文] 北京: 中国农业大学(东校区), 1986
- 3 Zuritz C, Singh R P, Moini S M, et al. Desorption isotherms of rough rice from 10 to 40. Transactions of the A SA E, 1979, 22(2): 435