植物根系的分形及计算机模拟

冯 斌

杨培岭

(中国农业大学电子电力工程学院) (中国农业大学水利与土木工程学院)

摘要基于计算机图像技术和分形理论,建立了植物根系分形度量的计算机模型,实现了对植物根系生长过程发育形态的计算机模拟。应用上述模型计算植物根系的分形维数与实际度量的维数基本一致,构造模拟的根系形态与实物不仅具有相近的分形维数,而且形态也非常相似。

关键词 分形: 分维数: L -系统: 布朗运动: 根系

分类号 TP 391.72; S 512.107

Simulation of the Root Growth by Using the Image and Fractal Growth Technology

Feng B in

Yang Peiling

(College of Electronic and Electric Power Engineering, CAU) (College of Water Conservancy and Civil Engineering, CAU)

Abstract An explanation about the application of image and fractal growth technology in simulation of roots was described. It is an illumination of plant roots growth model and a confirmation of fractal dimension. The methodology can be used in study of precise agriculture, i.e., the simulation of root growth in different moisture in soil

Key words fractal; fractal dimension; L-system; brownian movement; root

生长在土壤中的植物根系处于一个不可见的黑色系统中,对它的研究远不如对植株直观和便利。尽管国内外学者已对根系的发育从不同侧面进行了大量的研究,然而由于根系环境的不可见性和复杂性,以及测量技术与理论方法的局限性,使得研究结果与实际需求仍有相当的距离¹¹。

笔者从计算机应用角度出发,针对植物(冬小麦)根系,以计算机图形图像处理技术为手段,实现了计算机真实感模拟分析,重点分析了计算机模拟生成植物根系的方法和技术。

1 根系的分形度量

生长在土壤环境中的根系是一个典型的分形结构^[4], 由于外界条件的影响使其结构异常复杂, 且具有丰富层次, 要精确、真实地描述其生长特点, 只能用分形的方法。 不规整形状分形体的一个重要参数是M andelbort 的分维数, 根据文献[2, 3], 有

$$D = \frac{\ln N (r)}{\ln (r^{-1})}$$

收稿日期: 1999-11-09

冯 斌, 北京清华东路 17 号 中国农业大学(东校区) 213 信箱, 100083

式中: D 为M andelbort 分形维数. r 为尺子长度. N 为用 r 作为单位长度的度量结果。

通常把Hausdorff 维数是分数的形体称为分形. 此时D 值称为该分形的分形维数。当然. 严格地说,确定一个物体是否是分形,除看其维数外,还必须看它是否具有自相似性等其它特 征。对于根系来说,虽不具有严格的无限层次的自相似,但有限层次的自相似性是显而易见的。

把 Hausdorff 维数数学表达式改写为

$$D = \lim_{\delta \to 0} \frac{\ln N(\delta)}{\ln \delta^{-1}}$$

式中: $N(\delta)$ 表示 δ 覆盖的个数, 此时D 又可称为覆盖维数。

在上述分形维数的定义中,要求尺码趋于零时极限存在,这是因为理论上分形集具有无穷 嵌套层次: 但对于研究中的分形以及自然界存在的分形, 一般说来并不存在无穷嵌套结构而只 存在有限的嵌套层次, 所以对于 δ 尺码趋于零的这个要求, 在度量中很难实现, 而且对于不同 的对象, 其意义也不完全相同, 另外, 实际的分形还有一个存在层次的问题, 对于本文中度量的 对象来说,是指其宏观的空间分布上的分形,选用尺码的单位,应与其存在层次的尺度单位一 致。本文中选用计算机显示设备的最小单位像素为度量的尺码单位,以保证不改变研究对象的 分形结构,并且具有足够的精度。

设经处理的二值图像, $用_m \times n(\partial_m m)$ 矩阵 F表示

$$\mathbf{F} = \begin{bmatrix} F_{1,1} & F_{1,2} & \dots & F_{1,n} \\ F_{2,1} & F_{2,2} & \dots & F_{2,n} \\ \vdots & \vdots & \dots & \vdots \\ F_{m,1} & F_{m,2} & \dots & F_{m,n} \end{bmatrix}$$

其中, $F_{i,j} = g_{max}$ (最大灰度级) 时, 为目标物体像素; $F_{i,j} = g_{min}$ (最小灰度级) 时, 为背景像素。

取覆盖矩阵 A (边长为L, $L=2^l$ m, I 为整数), 将 F 完全覆盖住。取 δ 是边长为 2^l (l=0, 1, 2, ..., /i; /i< /) 个像素单位的正方形, 紧邻地覆盖 A, 统计包括目标物体像素的方格个数 N (δ),则有

$$N (\delta_0) = \begin{pmatrix} 1 \\ \delta_0 \end{pmatrix}^D \quad \delta_0 = 2^0$$

$$N (\delta_1) = \begin{pmatrix} 1 \\ \delta_1 \end{pmatrix}^D \quad \delta_1 = 2^1$$

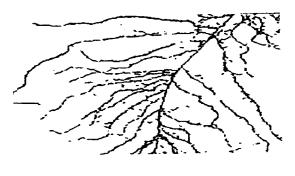
$$\vdots \qquad \vdots$$

$$N (\delta_l) = \begin{pmatrix} 1 \\ \delta_l \end{pmatrix}^D \quad \delta_l = 2^l$$

根据 δ 和 N (δ), 可以给出关系图; 根据该图确定 F 的维数 D 。 计算公式为

$$D = \frac{\int_{i=0}^{m} \left[\ln\left(1/\delta_{i}\right) - \overline{\delta}\right] \left[\ln N \left(\delta_{i}\right) - \overline{N}\right]}{\int_{i=0}^{m} \left[\ln\left(1/\delta_{i}\right) - \overline{\delta}\right]^{2}}$$
其中: $\overline{\delta} = \frac{1}{m+1} \int_{i=0}^{m} \ln\left(1/\delta_{i}\right) ; \overline{N} = \frac{1}{m+1} \int_{i=0}^{m} \ln N \left(\delta_{i}\right) ; i$ 为统计次数。

单主根植物根系和多主根植物根系的分形度量结果分别如图 1 和图 2 所示。



D = 1.1542

图 1 单 主根分形度量结果

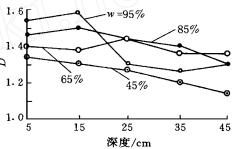
图 3 给出了 4 种含水率条件下, 不同土壤深度根 1.6 系分形维数的分布情况, 可以看出, 随着土壤深度的 增加,分形维数在降低,含水率对分形维数的大小影。 响很大。

2 计算机分形图像的生成

在知道了根系结构是分形结构, 以及分维参数 后, 结合其生长特点, 就可以建立模型并在计算机上 实现分形图像的生成。

多主根分形度量结果 w =95%

D = 1.2942



不同十壤深度根系的分形维数分布

2.1 单根的随机分形布朗运动

对于本文中论述的植物根系,由于在土壤中伸长时受到土壤结构、不同粒径土壤颗粒的分 布以及土壤湿度的影响, 使得根的伸长过程表现出随机波动的不规则形态。这种波动变化为描 述它的形态增加了难度,许多研究已经证实土壤作为一种多孔分散介质,不同粒径土壤颗粒的 分布与土壤空隙的分布表观上显示出明显不规整几何分布。笔者研究发现、根系伸长过程与布 朗粒子运动轨迹[2]的变化规律具有很强的相似性,可能恰是一种随机分形布朗运动,因此笔者 应用它去描述根系的伸长与生长运动,使计算机模拟的结果与实际更加接近。对具有标度指数 H 的根系分布布朗运动定义为:

设根尖运动为B(t), t 为时间, H 为指数, 0 < H < 1。 若满足下面全部条件:

1)B(t) 连续, 且 $P\{B(0)=0\}=1$; 2)任意 t=0, $\Delta t>0$, B(t) 服从均值为 0, 方差为 $[\Delta t]^{2t}$ 的 高斯分布; $3)B(\Delta t)$ 增量具有相关性, 即 H=0.5。则 $B(\Delta t)$ 为根尖分形布朗运动。

2.2 单根的分维数

通过实际度量和计算,单根的分形维数是:根系主根分形维数 1.15~ 1.21,产生 2 次侧根 的 1 次侧根的分形维数为 1.08~ 1.19。 无 2 次侧根分生的 1 次侧根的分形维数为 1.05~ 1.15。由于单根个体间的差异、发育极不均衡、在其发育的任何阶段都是3种类型并存、仅数量 不同而已。为了使模拟更真实和具有代表性、单根分形维数的取值范围为 1.01~ 1.20.对应的 H 指数为 0,95~ 0,80,各类型的根分别在对应的分形维数范围内随机选取,以充分体现单根 伸长所表现出的随机分形特征。

 \geq

2.3 形态结构模型

自然界许多事物和生物现象都具有随机的不规则的分形形态, 且具有一定层次上的自相似性特征, 植物根系正是如此。笔者以L-system^[2]形式化语言构造根系在空间的拓扑结构关系, 通过复写或替代生成复杂的图形, 且保证在层次上具有自相似性。

设V 为字母表, ω 为公理, P 为产生式集合, π 为概率分布函数。将产生式集合映射到产生式概率集合上, 用V 中任意字符, 以它为前驱可以有多个不同产生式, 所有这些产生式的概率之和为 1。根据被描述对象的生长过程和其基因特征, 用L -system 描述为如下形式:

$$\begin{cases}
P_{1}: & F \xrightarrow{\pi(p_{1})} FRF \\
P_{2}: & F \xrightarrow{\pi(p_{2})} FLF
\end{cases}
\begin{cases}
P_{3}: & R \xrightarrow{\pi(p_{3})} FRF \\
P_{4}: & R \xrightarrow{\pi(p_{4})} FLF
\end{cases}
\begin{cases}
P_{5}: & L \xrightarrow{\pi(p_{5})} FRF \\
P_{6}: & L \xrightarrow{\pi(p_{6})} FLF
\end{cases}$$

式中: F 代表根产生侧根时的伸长量; R 代表沿主根伸长方向右侧产生的分枝; L 代表沿主根伸长方向左侧产生的分枝。

3 结果分析

通过上述分析并建立相应的计算机模型,实现了对植物根系生长过程发育形态的计算机模拟,结果见图 4。通过检验,模拟结果与实测结果较为接近。从模拟的单根形态来看,在相同环境条件下,相同生长时间的模拟发育形态和实际发育形态基本相近;从模拟的单根不同埋深的分形维数来看,模拟结果的维数与实测的不同埋深的维数非常接近[4]。

参 考 文 献

- 1 杨培岭 根系生长与水土环境关系的研究: [学位论文] 北京: 中国农业大学, 1993
- 2 齐东旭 分形及计算机生成 北京: 科学出版社, 1993 127~ 243
- 3 张济忠 分形 北京: 清华大学出版社, 1997, 11, 111~ 219

4 冯 斌 基于分形图像处理的计算机模拟分析研究: [学位论文] 北京: 中国农业 图 4 单根形态的计 大学, 1996 算机模拟图

相对灌水量为 95%, 相对生长时间为 80%