引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 940次   下载 792 本文二维码信息
码上扫一扫!
CO2浓度升高对谷子干旱胁迫缓解的机制研究
冯雅楠1,王迎宾2,任宏芳1,张东升1,宗毓铮1,史鑫蕊1,李萍1,郝兴宇1*
0
(1.山西农业大学 农学院/科技部与山西省共建有机旱作农业国家重点实验室(筹), 太原 030031;2.辽宁农业职业技术学院 农学园艺学院, 辽宁 营口 115009)
摘要:
为探究干旱胁迫条件下CO2浓度升高对谷子抗旱性的影响机理,设置2个CO2浓度(400 μmol/mol左右正常CO2浓度和高CO2浓度,600 μmol/mol)和2个水分(正常供水和干旱处理)处理,测定孕穗期谷子光合能力、光合色素积累、叶绿素荧光、抗氧化酶、渗透调节物质、激素、信号转导相关蛋白激酶和逆境相关基因表达量等指标。结果表明:干旱胁迫下高CO2浓度(600 μmol/mol)处理显著提高谷子叶片水分利用效率(WUE)、净光合速率(Pn)、类胡萝卜素含量(Car)和类胡萝卜素/叶绿素(the ratio of carotenoids to chlorophyll);显著增加光化学淬灭系数(qP)、非光化学淬灭系数(NPQ),降低蒸腾速率(Tr);显著增加谷子叶片热休克蛋白(HSP-70)含量、脯氨酸(Pro)和脱落酸(ABA)含量及其相关基因表达量。干旱胁迫下高CO2浓度(600 μmol/mol)处理可显著增加谷子叶片丝裂原活化蛋白激酶(MAPK)含量及其相关基因表达量,过氧化氢酶(CAT)和谷胱甘肽-S-转移酶(GST)活性也显著增加。综上,高CO2浓度(600 μmol/mol)处理可通过缓解干旱胁迫下谷子叶片气孔导度和水分利用效率的降低、提高谷子渗透调节及信号转导能力,从而促进抗旱相关基因表达来提高谷子的抗旱能力。
关键词:  CO2浓度升高  干旱  谷子  叶绿素荧光  氧化应激  信号转导  植物激素
DOI:10.11841/j.issn.1007-4333.2022.07.05
投稿时间:2021-07-14
基金项目:山西农业大学省部共建有机旱作农业国家重点实验室自主研发项目(202105D121008-3-7);山西省留学人员科技活动择优资助项目(20210041)
Mechanism of the effect of elevated CO2 concentration on mitigating drought stress in foxtail millet
FENG Yanan1,WANG Yingbin2,REN Hongfang1,ZHANG Dongsheng1,ZONG Yuzheng1,SHI Xinrui1,LI Ping1,HAO Xingyu1*
(1.College of Agriculture/State Key Laboratory of Sustainable Dryland Agriculture Jointly Built by the Shanxi Province and theMinistry of Science and Technology(in Preparation), Shanxi Agricultural University, Taiyuan 030031, China;2.College of Agriculture and Horticulture, Liaoning Agricultural Technical College, Yingkou 115009, China)
Abstract:
In order to explore the mechanism of the elevated CO2 concentration on foxtail millet under drought stress, two CO2 concentrations(field concentrations about 400 μmol/mol and elevated CO2 concentrations: 600 μmol/mol)and two water treatments(normal water supply and drought treatment)were set up in this study. The photosynthetic capacity, photosynthetic pigment accumulation, chlorophyll fluorescence, antioxidant enzymes, osmotic adjustment substances, hormones, signal transduction related protein kinase and stress-related gene expression of foxtail millet at booting stage were measured. The results showed that: The water use efficiency(WUE), net photosynthetic rate(Pn), carotenoids content(Car)and the ratio of carotenoids to chlorophyll(Car/Tolal Chl ratio)of foxtail millet leaves were significantly increased with elevated CO2 concentration(600 μmol/mol)under drought stress; The photochemical quenching coefficient(qP)and non photochemical quenching coefficient(NPQ)were also significantly increased, while the transpiration rate(Tr)was significantly decreased. The contents of soluble sugar and heat shock protein(HSP-70), the contents of proline(Pro)and abscisic acid(ABA)and their gene expression were significantly increased with elevated CO2 concentration(600 μmol/mol)under drought stress. Elevated CO2 concentration(600 μmol/mol)significantly increased the contents of mitogen protein kinase(MAPK)and related gene expression under drought stress, and also significantly increased the activities of catalase(CAT)and glutathione-S-transferase(GST). In conclusion, elevated CO2 concentration(600 μmol/mol)could improve the drought resistance of foxtail millet by alleviating the decrease of stomatal conductance and water use efficiency of foxtail millet leaves under drought stress, improving the osmotic adjustment and signal transduction ability of foxtail millet, and promoting the expression of drought-related genes.
Key words:  elevated CO2 concentration  drought  foxtail millet  chlorophyll fluorescence  oxidative stress  signal transduction  plant hormone