摘要: |
在雷诺润滑理论的基础上,导出了存在填隙幂律流体时,圆球平行于平壁移动时流体压力的近似方程,导出了圆球所受阻力及矩的积分式,用数值解法求出阻力及阻力矩并给出了拟合表达式。可以证明,当幂指数为1时,由压力近似方程按渐近解法得到的解可退化到Goldman等的牛顿流体下的渐近解,并表明本文中提出的数值解明显优于渐近解。 |
关键词: 平行移动 散体 离散元法 填隙幂律流体 圆球 平壁 近似解法 |
DOI: |
修订日期:2001-03-12 |
基金项目:国家自然科学基金资助项目 |
|
An Approximate Solution on a Sphere Moving Parallel to a Plane of an Interstitial Power-Law Fluid |
|
|
Abstract: |
The approximate pressure equation for a sphere moving parallel to a plane of an interstitial Power Law fluid was derived according to Reynolds' lubrication theory. The approximate expression of the tangential viscous force and torque were obtained and the corresponding fitting expression was developed. Compared with Goldman's asymptotic solution for a Newtonian fluid, the presented numerical solution could be reduced to Goldman's result when the power index equals 1, and is more accurate. |
Key words: Distinct Element Method,agglomerate,Power Law fluid |